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Detection and Recognition 

Modern psychophysics is concerned with asymptotic choice behavior 
when subjects respond to four general types of questions about simple 
physical stimuli : 

1. Is a stimulus there? (The absolute threshold and, more generally, - 
detection problems.) 

2. Which of several possibilities is i t?  (The recognition problem.) - 
3. Is this stimulus different from that? (The discrimination problem.) 
4. How different is this one fr?m that?  (The scaling problem.) - 
These, then, are the problems confronting the mathematical psycholo- 

gist who attempts to create formal theories to summarize the empirical 
findings of psychophysics and to guide further research. A report of 
these mathematical studies for the first two questions is given in this 
chapter; for question 3, in the next; and for question 4, in Chapter 5. 

In  addition to this intuitive classification of the chapters, there is a more 
formal one based on the concepts defined in Chapter 2. Except for Sec. 9, 
the models in this chapter are for complete identification experiments, 
those in the next are for partial identification designs, and those in the 
scaling chapter are for choice experiments in which no identification 
function is defined. 

It will be recalled from Chapter 2 that in complete identification 
experiments the experimenter establishes, and explains to the subject, a 
one-to-one correspondence 1 between the response set R and the stimulus 
presentation set S. Because of this correspondence, each response desig- 
nates a unique presentation both to the experimenter and to  the subject. 

Among the possible complete identification experiments, two sub- 
stantively different groups of studies have been performed. Those called 
detectiorz experimerzts have the set of stimuli 9 = {A,, O), where O denotes 
the null and ,J a nonnull stimulus, a presentation set S c 9", and there 
may or may not be a background. In the simplest of these detection 
experiments the subject decides on each trial whether n or O is added to  
the background; in more complicated ones he decides in which of several 
time intervals or spatial locations A- has been added to  the background. 

In terms of the stimulation used, three types of detection experiments 
may be distinguished: 

1. Absolute threshold studies-the classic procedure-in which no 



106 D E T E C T I O N  A N D  R E C O G N I T I O N  

background is introduced by the experimenter and A is so near the 
lower limit of perception that the subject is not perfectly certain 
when it is present. 

2. Quanta1 studies in which there is a simple background, such as a 
pure tone, and A is simply an increment (or decrement) in one 
dimension of the background; for example, in energy or frequency. 

3. Signal detection studies in which there is a complex background and 
A differs from it on more than one dimension; in an extreme but 
frequent case, the background is white noise and A, a pure tone. 

In recognition experiments, our other main category, the stimulus set 
includes at least two stimuli different from the null one and, with few 
exceptions, S = Y.  In most recognition studies Y does not include the 
null stimulus, but, as I shall argue in Sec. 7.1, this is a dubious practice 
when the stimuli are not perfectly detectable. 

The data from complete identification experiments are often first 
summarized into what are called confusion matrices. The rows of such a 
matrix are identified with the stimulus presentations and the columns with 
the responses, ordered so that the ordinary correspondence between rows 
and columns is the same as that defined by the identification function I .  The 
entries are either the absolute frequencies f,, or the relative frequencies 

f ST $(r I s) =- 
2 f s T ,  

TIER 

of response r to presentation s. 
The relative frequency p(r I s) is generally interpreted as an estimate of a 

corresponding conditional response probability p(r I s) which in most 
models is assumed to be a constant independent of the trial. In addition, 
the responses on different trials are usually assumed to be statistically 
independent. The first assumption is easily dropped by reinterpreting 
$(r I s) as an estimate of the expectation ofp,(r I s) at  asymptote; however, 
most of the models actually assume that the probabilities themselves, not 
just their expectations, are constant. The assumption of response inde- 
pendence is a good deal more troublesome, for there is considerable 
evidence (e.g., Neisser, 1955; Senders, 1953; Senders & Sowards, 1952; 
Speeth & Mathews, 1961) indicating that it is incorrect. We persist in 
making it, in spite of the evidence, because of the difficulty in constructing 
models that are tractable and have response dependencies. Although no 
one has formulated and proved any results to this effect, one suspects that 
there may be judicious ways to add dependencies to response-independent 
models so that certain of the asymptotic properties are unchanged. Such 
results are needed to justify many of our current practices of data analysis. 
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At one time the data from recognition experiments were either presented 
in uncondensed form as confusion matrices or they were summarized by 
one or another of the standard contingency-table statistics. Until quite 
recently, nothing like a coherent theory had evolved, and the empirical 
generalizations were few. Three may be mentioned. Let the presentations 
be labeled s,, s,, . . . , s, and the responses, 1, 2, . . . , k in such a way that 
~ ( r )  = s,. First, the largest entry in row s, is generally the main diagonal 
one, $(r I s,). Second, although the matrix is not strictly symmetric in 
the sense that $(r ( s , )  = $(r' I s,), there is a definite tendency in that 
direction. Third, when the presentations are physically ordered-for 
example, by intensity, size, frequency-so that s, < s, < . . . < s,, 
then the value of @(r I s,) dips down rapidly from p(l I s,), reaches a 
plateau in the midrange, and then rises again rapidly to $(k I s,). In other 
words, plots of p(r I s,) versus r are usually U-shaped. Their exact nature 
depends upon the number and spacing of the presentations as well as upon 
the experimental conditions. Examples of size, color, and position con- 
fusion matrices can be found in Shepard (1958b). 

In the early 1950's a number of psychologists began to analyze recogni- 
tion confusion matrices in terms of Shannon's information measure, and 
several comparatively simple generalizations resulted. These we discuss 
in Sec. 7 on recognition experiments. What is still lacking is an adequate, 
detailed response theory to explain these somewhat gross results. 

The study of detection has proceeded largely independently of the 
work on recognition, with, however, some fusion developing in the last 
several years. Detection research began early in the history of experi- 
mental psychology with determinations of absolute and difference thresh- 
olds. Theoretical contributions were scattered until the early 1950's when 
a program of theoretical and experTmental research emerged at the 
University of Michigan. Somewhat later several related programs 
developed elsewhere in the United States. 

Our study begins with the several analyses of detection experiments 
which are currently of interest, and in Secs. 7 and 8 some of the same 
ideas are applied to recognition experiments. 

1 .  REPRESENTATIONS O F  T H E  RESPONSE 
PROBABILITIES 

Attempts to account for the behavioral relations among various types 
of identification experiments, both complete and partial, have so far 
resulted in three distinct response theories. In this section each is described 
in moderately general terms with little reference to specific experiments; 
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in the remainder of the chapter and in much of the next two they are 
applied to specific designs. The reader may well wonder why three different 
theories for the same behavior should be presented, when, after all, at 
most one can be correct. One reason is that there is no assurance that the 
same response theory is appropriate for all modalities or for different 
tasks within one modality, but more important, it has been impossible 
so far to choose among them on empirical grounds even for a single 
type of experiment within one modality. Their predictions tend to be 
similar, and where there are differences the experimental results have been 
either inconclusive or contradictory. This situation is hopefully transitory; 
in fact, considerable clarification can be expected in the next few years. 

1.1 Signal Detectability Theory 

The notions underlying signal detectability theory originally took root 
in psychology during the period bounded by Fechner and Thurstone. 
Later they reappeared in a slightly different guise explaining not just 
discrimination but also detection and recognition. W. P. Tanner, Jr., 
and his colleagues at the University of Michigan reinterpreted and modified 
analyses of optimal physical detection of electrical signals in noise 
(Peterson, Birdsall, & Fox, 1954; van Meter & Middleton, 1954) into a 
psychophysical theory. Some of the same ideas were also developed by 
Smith and Wilson (1953). In addition to the theory, a series of interrelated 
experiments have been performed (Birdsall, 1955, 1959; Clarke, Birdsall, 
& Tanner, 1959; Creelman, 1959, 1960; Egan, Schulman, & Greenberg, 
1959; Green, 1958, 1960; Green, Birdsall, & Tanner, 1957; Speeth & 
Mathews, 1961; Swets, 1959, 1961b; Swets & Birdsall, 1956; Swets, 
Shipley, McKey, & Green, 1959; Swets, Tanner. & Birdsall, 1955, 1961; 
Tanner. 1955, 1956, 1960, 1961; Tanner & Birdsall, 1958; Tanner, 
Birdsall, & Clarke, 1960; Tanner & Norman, 1954; Tanner & Swets, 
1954a.b; Tanner, Swets, & Green, 1956; Veniar, 1958a,b,c). These 
researches go under the name of signal detection, or, as Tanner prefers, 
signal detectability theory. Survey papers by Green (1960), Licklider 
(1959), and Swets (1961a) give summaries of the central ideas and experi- 
mental findings. 

The main notion is that the pertinent information available to the 
subject as a result of the stimulation can be summarized by a number; 
however, repeated presentations of the same stimulus produce not the 
same number but a distribution of them. The subject is assumed to behav~ 
as if he knew these distributions. He evaluates the particular number 
arising on a trial in terms of the distributions from which it could have 
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arisen, much as a statistician evaluates an observation to decide between 
a null and an alternative hypothesis (Wald, 1950). Indeed, the two models 
are formally the same. 

The theory does not say where these distributions come from, although 
their usually assumed normality easily suggests a pseudoneurology in 
which many small independent neuronal errors accumulate to form the 
resultant error; nor does it tell how the subject comes to know the dis- 
tributions, but a learning process during pretraining seems a likely candi- 
date; nor does it suggest how the subject carries out the various needed 
transformations and calculations. Unexplained, "internal" numerical 
representations such as these are characteristic of almost all psycho- 
physical theories and they simply indicate, I suspect, the relatively primi- 
tive state of the theory. Nonetheless, we are no more obliged to account 
for them in, say, physiological terms than were the authors of the first 
macroscopic physical theories required to explain planetary motions in 
terms of elementary particle properties. 

Tanner and his colleagues arrived at the representation in this way. 
The effect of a presentation s is supposed to be a random vector s which 
assumes values in a k-dimensional Euclidean space E,; that is, the effect 
of stimulation is assumed to be adequately described by a k-tuple of 
numbers. Not only does this seem moderately plausible, but for frequency 
bounded temporal signals the important sampling, or 2 WT, theorem 
(Shannon & Weaver, 1949) shows that in the limit as T+ co such a 
representation of their physical properties is indeed possible. 

If x E Ek, the probability density that stimulus s produces the effect x, 
~ ( ~ ) ( x  I s) is assumed to exist. Suppose. for the moment, that one of two 
presentations, s or s', occurs on each trial and that on a particular trial an 
observation x occurs. The subject must use it and his assumed knowledge 
of the distributions p("(. I s) and P("(. I sf)  to  decide which of the two 
presentations fathered it. In such matters there is an inherent uncertainty. 
It is plausible that he might decide by considering the relative likelihood 
of the two presentations generating x. Specifically, let us suppose that he 
calculates the likelihood ratio 

If this number is large, it is only sensible to say that s was presented; if 
small, s'. This suggests that the subject should establish a cut-poitit (or 
criterion) c and use the decision rule: 
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where the logarithmic transformation has been introduced for convenience 
later. 

Assuming such a rule, we wish to calculate the response probabilities. 
To do so, we need expressions for the distributions of log I corresponding 
to the two presentations. Define the set 

L(z) = {x I log I(x) = z ) ,  

then if 

exist, they are the desired distributions. These are usually assumed to be 
normal distributions; one of the main reasons for this assumption is 
given in Sec. 6.1. 

With the decision rule given in Eq. 2, the expressions for the response 
probabilities are easily seen to be 

where r is the response such that ~ ( r )  = s. 
Several comments and cautions. First, why, aside from plausibility, 

have we assumed that the decision axis is (the logarithm of) the likelihood 
ratio axis? The main reason, as we shall see in Sec. 5.1, is this. Had we 
begun with an uninterpreted decision axis, as Thurstone did in his analysis 
of discrimination problems, and were we to assume that the decision 
procedure is optimal in the sense of maximizing the expected payoff, then 
the decision axis must be the likelihood ratio axis or a monotonic function 
of it. The logarithm is, of course, a monotonic function. 

Second, is a cut-point decision rule reasonable? It seems to be if the 
two distributions are like those of Fig. 1. Moreover, when they are 
distributions of likelihood ratios, it can be shown that cut-points lead to 
optimal behavior for various definitions of optimality. Were it possible, 
however, for the distributions to be multimodal, as, for example, in, Fig. 2, 
then a cut-point rule would clearly be inappropriate. It is not difficult to 
show that distributions such as those in Fig. 2 cannot occur for a decision 
axis which is a monotonic function of likelihood ratio, For a given 
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Fig. 1 .  Typical normal distributions of the logarithm of the likelihood ratio for two 
different stimulus presentations. 

likelihood ratio I ,  we know by Eq. 1 that for any x E L(1og I ) ,  then 
p("(x I s) = IJI(~)(x I s'). Thus, by Eq. 2, 

= lp(z I s'). 

Thus the two distributions must be closely related to one another; specifi- 
cally, the ratio of the two values at z = log I must be just I.  Therefore, 
because the ratio I is a monotonic function of z = log I, distributions 
such as those shown in Fig. 2 are impossible. 

Third, what happens when there are three or more presentations? 
This is a fairly subtle matter. In many of the experiments to which the 

Dec~sion axis 

Fig. 2. Multimodal distributions for which a cut-point decision rule is not appropriate 
but which cannot occur if the decision axis is a monotonic function of likelihood ratio. 
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Fig. 3. Three normal distributions on a single decision axis, which cannot occur if the 
decision axis is a monotonic function of likelihood ratio. 

theory has been applied one of the presentations, n, is a noise background 
that contains no stimulus and the others, s, sf ,  . . . , consist of stimuli 
embedded in the noise. The several distributions of effects over the Euclid- 
ean k-space are assumed to  be statistically independent of each other. If 
we suppose that the stimuli s and s' differ only on one dimension, say 
energy, it seems plausible to think of the three distributions as existing 
over a common decision axis, as in Fig. 3. Unfortunately, such a simple 
representation in terms of a likelihood ratio axis does not follow 
from the argument just given for two stimuli. The trouble is that when we 
compare n and s the likelihood ratio noise distribution, p(z ( n), depends 
not only upon pk(. I n), which by assuinption is independent of the other 
presentations, but also upon the set L(z). Because L(z) is defined in terms 
of the likelihood ratio, it depends upon pk(. I s) as well as upon pk(. I n). 
That is to  say, in terms of likelihood ratio each stimulus has its own 
separate noise distribution. Or we may see it another way. In the two- 
stimulus case we have just shown that p(log 1 I s)/p(log 1 I s') = 1, so where 
two distributions intersect, that is, where p(log 1 I s) = p(log I ]  s'), the 
likelihood ratio must be 1. But there are three such intersections in Fig. 3, 
all of which would have to correspond to  the same likelihood ratio of 1, 
which is clearly impossible. 

This means that complete identification experiments with more than 
two presentations cannot usually be reduced to a one-dimensional represen- 
tation because each pair of presentations has its own likelihood ratio 
axis. It is customary in signal detectability theory to assume that the 
logarithms of these several axes can be embedded in an Euclidean space 
of appropriate dimension. Two serious problems result: when should 
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the separate axes be assumed to  be orthogonal and to  what class of parti- 
tions should the decision rule be restricted'? No  class of rules seems 
nearly so compelling for a space as does the cut-point rule for a line. 

1.2 Choice Theory 

Choice theory has been discussed, in one variant or another, by 
Bradley (1954a,b, 1955), Bradley and Terry (1952), Clarke (1957), Luce, 
(1959), Restle (1961),"hepard (1958a,b), and Shipley (1960, 1961) for 
either complete or partial identification experiments or  both. No  very 
systematic statement of the intuitions underlying these models has yet been 
given. Although I shall attempt some clarification, I am still far from a 
completely satisfactory axionlatic statement of all that is involved. First, 
the basic representation will be stated, and then I shall consider briefly 
some of the justifications that have been given for it. 

Two ratio scales (i.e., scales unique up t o  multiplication by positive 
constants) 

q :  S x S -t positive real numbers 

b :  R -t positive real numbers 

are assumed to exist such that when i is the identification function the 
response probabilities are of the form 

The scale -11 is interpreted as a measure of the similarity between the 
presented stimulus s and the one, i(r), for which r is the correct response. 
The scale b, which is associated only with responses, is interpreted as a 
measure of response bias. 

At present, Eq. 5 is useful only if we make certain additional assump- 
tions. Those we make, which are in large part suggested by Shipley's 
(1961) work, all arise from preconceived notions about the intuitive 
meaning of the q scale and from considerations of mathematical simplicity; 
they are neither obviously necessary nor clearly dictated by data, even 
though their consequences have received some empirical support. 

The first three assumptions can be interpreted as formalizing our 
interpretation of q as a measure of the similarity between stimuli or, 
equally well, as postulating that the logarithm of 7 behaves like a measure 
of "psychological distance." 

Although I had an opportunity to read Restle's interesting book in manuscript form, 
it was not available to me when this chapter was being drafted and so no attempt has 
been made to incorporate his ideas directly. 
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Assumption I .  For all s, s' E S, q(s, sf) = q(sl, s). 
Assumption 2. F o r a l l s ~ S ,  q(s,s) = 1. 
Assumption 3. For all s, sf,  sf' E S, q(s, s") > q(s, s')q(sl, s"). 

The heart of Assumption 2 is that the number q(s, s) is independent of 
s ;  setting it equal to 1 merely fixes the unit of the q scale. 

It is easy to see that 

d(s, sf) = -log q(s, s') (6) 

satisfies the usual distance axioms, namely: 

1. d(s, s') = d(sf, s). 
2. d(s, sf) 0 and d(s, s) = 0. 
3. d(s, s") < d(s, st) + d(s', s"). 

These three assumptions are used in all applications of the choice 
theory later. In addition, a fourth assumption, which is suggested by the 
interpretation of d as a distance measure, will sometimes be made. It 
plays exactly the same role in the choice theory as the orthogonal em- 
beddings of the logarithm-of-likelihood-ratio axes into Euclidean spaces 
which are used in signal detectability theory. 
Assumption 4. I f  S = S, x S2 x . . . x Sk and if q is deJined ouer S 

and over each of the Si, then for s = (sl, s2, . . . , sk) and t = 
(t', t2,. . . , t k )  ES, 

k 

where d is deJined by Eq. 6. 
This states that if the stimuli can be viewed as having k distinct com- 

ponents-the S,-then the several distance measures are interrelated as 
one would expect them to be, provided that the Si were to correspond to 
the orthogonal dimensions of an Euclidean k-space and the distance, to 
the natural metric in that space. It is, of course, possible to write a 
weaker assumption in which the coordinates are not orthogonal, but this 
adds many more parameters to the model, namely the angles between the 
coordinates. Because we do not need this weaker version, it will not be 
described in detail. 

The origins of this particular representation lie in two papers, a book, 
Shipley's thesis, and some unpublished work. Shepard (1957) suggested 
what amounts to Eq. 5 and Assumptions 1 to 3 to relate either stimuli 
to stimuli or responses to responses, and later Shepard (1958a) suggested 
the formula 
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where ~ ( r )  = s and ~(r ' )  = s', as a "measure of stimulus generalization" 
between s and s'. By Eq. 5 and Assumptions 1 and 2, this equals 

which is what was just termed a measure of stimulus similarity. Probably 
the same intuitions are involved, although the terminology differs. 

Clarke (1957) proposed a model much like Eq. 5. Suppose that (S, R, L) 
and (S', R', 1') are two complete identification experiments for which 
s E Sf c S, r E R' c R, and L' is the restriction of i to R'; then he assumed 
what he called the constant ratio rule, namely, 

In terms of Eq. 5, this assumption is equivalent to asserting that stimulus 
similarity ~ ( s ,  s') is independent of the particular S employed, with which I 
would agree, and that the response bias b(r) is independent of the particular 
R employed, which I doubt. Both hypotheses must, of course, be sub- 
jected to experimental scrutiny, but in my view the model stands or falls 
on the first being correct; the second is not in the least crucial, given that 
b is interpreted as a response bias, and so it is not assumed here. 

In Individual Choice Behavior (1959) I wrote down choice models for 
several specific detection and recognition experiments, but Eq. 5 was not 
stated in its full generality. These particular models, sometimes slightly 
modified to be consistent with Eq. 5, reappear below as applications of 
Eq. 5. 

Recently, Bush, Luce, and Rose (1963) have shown that Eq. 5 arises 
as the asymptotic mean response probability of a simple experimenter- 
controlled (i.e., response-independent) linear learning model for complete 
identification experiments. (For a detailed discussion of stochastic learning 
models, see Chapter 9 of Vol. 11). Specifically, they suppose that when 
stimulus s' is presented and r' is the correct response, that is, ~(r ')  = sf,  
on trial i, then on trial i + 1 

where ST,. is the Kronecker delta (equal to 1 when r = r' and 0 otherwise). 
They interpret B(rf) as a basic learning rate parameter associated with the 
response that the subject should have made and q(s, sf)  as a similarity 
parameter representing the generalization from presentation s to presenta- 
tion sf .  It  is clearly possible to define the learning rates so that ~ ( s ,  s) = 1 
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for all s E S. WC sce that whenever s' is presented the conditional proba- 
bility of response r' occurring to any presentation is linearly increased, 
whereas the probabilities of all othcr responses are linearly decreased. 
The amount of the increase depends both upon the learning rate parameter 
and upon the generalization between s and st. 

Summing over the equation, it is easy to see that 

so the model is consistent. 
Let P(s) denote the presentation probability of s, then 

If we calculate expectations overp,(r I s), then take the limit as i -+ co, and 
finally solve, we obtain 

lim E[p,(r I s)] = 
7[s3 l(r)lb(rl 

i - m  2 V [ S >  l(rt)1b(r') ' 
T ' E  R 

where b(r) = P[r(r)]O(r). 
Thus the learning model not only leads to Eq. 5 as the asymptotic 

expected response probabilities, but it says that each response bias pa- 
rameter is the product of the corresponding presentation probability and 
the learning rate parameter. The stimulus parameters are again inter- 
preted as measures of similarity. In addition to accounting for Eq. 5 ,  the 
learning model is of interest because it generates some sequential com- 
plexity in the trial-by-trial response patterns. As yet, however, little 
work has been done on  the details of this stochastic model. 

1.3 Threshold (or Neural Quantum) Theory 

In the traditional psychological literature a chapter called "detection" 
is not found; however, what amount to detection experiments and some 
related theory are included, along with other designs, under the titles of 
"absolute" and "difference thresholds." The notion of a threshold, which 
is at  least as old as Greek philosophy, is that some energy configurations, 
or differences, simply are not noted because of limitations imposed by the 
sensory and neural mechanisms. A characterization of this feature of the 
receptor system-when it exists-forms a partial description of the 
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dynamics of that system, and a theory of its role in generating responses 
constitutes a partial description of the response mechanism ofthe organism. 

Absolute and difference threshold experiments differ i n  this way. When 
the subject is asked to detect whether or not a stimulus has been presented, 
we are usually concerned with the value of the absolute threshold. But 
when he is asked to detect the difference between two temporal or spatial 
regions of stimulation, we are concerned with the difference threshold. 
Because the first can be viewed as detecting a difference between two 
regions of stimulation, one of which is null, no attempt is made in the 
formal theory to distinguish between the two problems. 

The value of the absolute threshold is generally defined to be that level 
of stimulation that is detected 50 (or some other arbitrarily chosen) per 
cent of the time when the observing conditions are relatively ideal. The 
actual techniques used are various; some are rapid and probably yield 
biased or variable estimates, others are more painstaking. But, however 
the determinations may be made, two things are important to us. First, 
although the resulting numbers are called threshold values, there is 
nothing to prevent the procedures from yielding the numbers even if 
there are no thresholds. Both the detectability and choice theories, which 
postulate no thresholds, lead one to expect that "threshold" values can be 
determined. Second, the behavior of the subject is not really the object of 
study; rather, attention is paid to the limiting characteristics of his 
sensory system. When the behavior has been examined, it has us~~ally 
been for "methodological" reasons-to improve the reliability or speed 
of the techniques. Examples of such research can be found in  Blackwell's 
(1953) moiiograph on the determination of visual thresholds. Thus, 
although the threshold literature is large, it still remains for other psycliol- 
ogists to derive behavioral predictions from a threshold model, to use 
these to discover whether thresholds really exist, and to determine how 
such a psychophysical theory interacts with other factors affecting behavior. 

In making threshold determinations, valued outcomes, or even infornia- 
tion feedback. have rarely been used. Often the subject is instructed to 
miiiimize his "false-alarm" rate, and during pretraining he may be 
informed about his errors on catch trials. Some experimenters wait until 
the false alarm rate is sufficiently low-as they say, until the subject has 
established a "good criterion"-before proceeding to the main part of the 
experinient. Others simply estimate the false-alarm rate from the pre- 
training trials, and still others include catch trials during the experinient 
proper from which they estimate the rate. Sometimes these rates are 
simply reported; at other times they are used to "correct for guessing." 
I shall discuss the model for this correction presently (Sec. 2.3). 

The existing threshold model was developed in two stages. The first, 
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which in essence is a discrete analogue of the Thurstone-Tanner statistical 
model for stimulus effects, was initially stated along with supporting 
evidence by BCktsy (1930); later Stevens, Morgan, and Volkmann (1941) 
refined the statement and added appreciably to the evidence. The second 
stage, which is concerned with the biases introduced by the subject, began 
with the model for correcting for guessing, was reformulated by Tanner 
and Swets (1954a), and was then extended by Luce (1963). For a general 
discussion of many of the issues involved and for some alternatives to 
the model we will discuss, see Swets (1961b). 

The BCktsy-Stevens model assumes that the effects of stimulation are 
discrete, not continuous as in the other two models. There is supposed 
to be a finite (or countable) sequence of "neural" quanta, which we may 
identify by the integers 1, 2, 3, . . . . A neural quantum is not identified 
with any particular neural configuration, although presumably it has Tome 
physiological correlate. At a given moment, stimulation is assumed to 
"excite" the first j of these quanta, but because of irregular fluctuations 
this number does not necessarily remain fixed over time, even when the 
stimulation is constant. The main feature of this quanta1 structure is that 
two stimuli, no matter how different they may be physically, cannot be 
different to the subject if they excite the same number of neural quanta. 
If this model is correct, the only changes that he can possibly notice are 
those producing a change in the number of excited quanta. 

Let us suppose that just prior to the presentation of s on trial i, j quanta 
are excited by the residual environment plus the background, if any. 
When s is presented, suppose j' quanta are excited. The change, then, is 
j' - j, and so we can think of the effect of presenting s on trial i as O(s, i)= 
j' - j, that is, the presentations generate a function 

where I denotes the set consisting of zero and the positive and negative 
integers. Because the background is assumed to have a fluctuating effect, 
O(0, i )  is not necessarily 0, as one might first think. 

The subject can detect a presentation only if O(s, i) is not zero, but there 
are situations in which it is reasonable for a subject to require a change of 
more than one quantum before responding that a stimulus was presented. 
With that in mind, we have the following class of "internal" detection 
rules: 

\the same as 1 
A presentation s on trial i is detected as the background 

\dzfSerent fronzl 
- k  ,< O(s,i) ,< k' 1 
B(s, i) < - k  or >k'\ ' where k and k' are nonnegatioe integers. (7) 
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Although the evidence makes one suspicious, it is generally assumed 
that Pr [B(s, i) < -k or > k'] is independent of i but not of k and k'. We 
denote this probability by q(s, k, kt), or simply by q(s) when k and k' are 
assumed fixed, and we speak of it as the true detectionprobability. This is 
not necessarily the same as the corresponding response probability which 
one estimates from experimental data-there may be response biases. 

The second component of the model is the effect of the outcome struc- 
ture. The obvious parallel to signal detectability theory is to suppose that 
biases are introduced by the selection of the cut-points k and k'. This 
model should be explored, but it has not been. Rather, it has been assumed 
that k and k' are fixed in a given situation and that the subject biases his 
responses in the light of the payoff structure simply by falsely converting 
some detection observations into negative responses or some no-detection 
observations into positive ones. 

As in the other two models, there are two types of parameters. The true 
detection probabilities q(s) are considered to be stimulus-determined, and 
the proportions of falsified responses are bias parameters which depend 
upon, among other things, the outcomes. The main body of the Bekesy- 
Stevens work is concerned with the dependence of the stimulus parameters 
upon the stimulus (see Secs. 6.2 and 6.3), whereas other authors have 
focused more upon the response model and the dependence of the biasing 
parameters upon the outcome structure (see Secs. 5.2 and 6.3). 

We turn now to two of the simplest detection experiments and show in 
turn how each of these three theories tries to account for the behavior. 

2. SIMPLE DETECTION 

Of the possible detection experiments, the simplest is the Yes-No 
design. At regular time intervals, which define the trials and which are 
marked off by, say, lights, a stimulus may or may not be added to a 
continuous background. Following each such interval, the subject 
responds, usually by pressing one of two buttons, to the effect that "Yes, 
a stimulus was present" or "No, none was there." Each presentation, 
stimulus plus background and background alone, is repeated some 
hundreds of times according to a random schedule, and the conditional 
choice probabilities are estimated by the relative frequencies of choices. 

This is easily seen to be a complete identification experiment in which 
Y = {A, 01, where 0 is the null stimulus, S = Y,  and R = {Y, N), where 

Y means Yes and N, No. The identification function is, of course, 
i(Y) = A and i(N) = 0. It is convenient to think of the background as 
noise and to change. notation to the extent that s denotes "A plus noise" 



120 D E T E C T I O N  A N D  R E C O G N I T I O N  

and n denotes "0 plus noise," that is, noise alone. So we treat {s, n) as the 
presentation set. In  summary, the confusion matrix is 

Presentation Stimulus 
Probability Presentation Response 

Y N 

P S 

1 - P  n 

~ h e r e ~ ( ~ I x ) + ~ ( ~ ( x ) =  l , x = s o r n .  
Next in complexity is the t1r.o-alternatiae forced-choice design in which 

two time intervals (or space locations) are marked off, and the subject is 
told that the stimulus is in one of the two intervals, but not both. The 
subject responds by indicating whether he believes the stimulus was in the 
first or  the second interval. Otherwise, the experimental conditions are 
the same as in the Yes-No design. So, 9 = {A,, 01, S = { (A ,  0), (0, A,)), 

R = (1, 21, and (1) = (A,, 0) and 1(2) = (0, a). Again, we write the 
presentations as (s, n) and (n, s )  to emphasize the addition of the noise 
background. The confusion matrix is 

Presentation Stimulus 
Probability Presentation Response 

1 2 

P ( 4  n) p ( l  1 (s, n)) p(2 1 (s, n)) 

I - P  (n, s> p ( l  1 (n, s)) p(2 1 (n, s)) , 
where p ( l  I x) + p(2 I x) = 1, x = (s, n) or (n, s). 

I 
2.1 Signal Detectability Analysis 

Because we have already discussed the signal detectability model for a 
general two-element presentation set, the model for the Yes-No experi- 
ment follows from Eq. 4 simply by making the appropriate notational 
changes : 

Nothing has really been specified, however, until the forms of the density 
functions p(z I s) and p(z I n) are known. Throughout signal detectability 
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theory they are assumed to be normal in z, the logarithm of the likelihood 
ratio. There is no  loss of generality if we set the mean of the noise distri- 
bution at  zero, for the location of the zero of the decision axis is arbitrary. 
Of course, the specific magnitude and sign of c depends upon that choice. 
Let the mean of the stimulus distribution be d. For the while, let us assume 
that the variances of the two distributions are equal, the common value 
being a" even though later certain data force us to abandon this in favor 
of an  assumption that a ,  > a,,. Under these assumptions, Eq. 8 becomes 

1 "" 
( 2  - d)" 

P(Y I 11 = -- J exp dz 
J 2 n o  c 

1 
(9 )  

p(Y I n )  = - 
JGO r e x p  [- $1 d ~ .  

In effect, the stimulus simply displaces the noise distribution to the right 
by the amount d. Because the unit of the decision axis is arbitrary, we can 
choose it to be a,  in which case the displacement is d' = d/o.  This normal- 
ized distance is a basic parameter of the signal detectability model. I t  is 
interpreted as a measure of the subject's sensitivity to the stimulus and it 
is thought to be independent of other experimental conditions such as the 
payoffs. The cut-point c is thought to be a bias that depends upon 
factors such as the presentation probability and the payoffs. 

There is no question a t  this point that the model accounts for the 
observed response probabilities because there are two parameters, d' and 
c, and only two independent probabilities. (Of course, it may not account 
for sequential properties of the data). So we turn to the two-alternative 
forced-choice design to see whether the same stimulus parameter can be 
used to predict the data that are obtained there. 

We make exactly the same assumptions as in the Yes-No experiment 
about the effect of a presentation of either s or  n :  the distributions are 
both normal, they have the same standard deviation, and the difference of 
the means is d. In the forced-choice design the subject makes two obser- 
vations, X, and X, in the logarithm of likelihood ratio, corresponding to 
the two intervals. It is plausible that he uses the following decision rule: 

cl .  For some ualue c l ,  respond (i) i f  X, - X, (<, 

For stimulus presentation (s ,  n ) ,  X, - X, = S - N, and for (n ,  s ) ,  
XI - X, = N - S. 

The question is: how are these two differences distributed? When the 
background and stimulus plus background differ simply in one dimension, 
such as energy or frequency in the quanta1 experiments (see Secs. 6.2 and 
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C .- 
"l C 

9 

C .- - .- 
n 
n 
2 
a 

Logarithm of the ratio of likelihood ratios 

Fig. 4. Normal distributions of X, - X, for the two-alternative forced-choice design 
assuming S and N are normally distributed with standard deviation u and separated by 
an amount d. 

6.3), or when each interval includes a stimulus and they differ only in one 
dimension, as in the traditional discrimination experiments (see Sec. 3.1 
of Chapter 4), then it is usually assumed that the effects of successive 
presentations are correlated. No  very firm argument has been given why 
this should be, but the feeling seems to  be something to the effect that the 
random errors introduced by the subject are due to comparatively slow 
changes in his reactions to the dimension being varied. When, however, the 
background is random noise and the stimulus is a tone, it is believed that 
it is more plausible to  suppose that successive presentations have effects 
that are independent of one another. Under that assumption, it is easy to 
determine the two distributions we need by invoking the well-known fact 
that the distribution of the difference of two independent, normally dis- 
tributed random variables is normal with mean equal to the difference of 
the means and variance equal to the sum of the variances. Thus the 
distribution of effects from (s, n) is normal with mean d and standard 
deviation J j o ,  and that from (n, s), normal with mean -d and standard 
deviation also J j o .  The situation is shown graphically in Fig. 4. From 
this and the assumed decision rule, Eq. 10, we obtain 

Observe that c' = Ocorresponds to  no bias in the sense thatp(1 I (s, n)) = 
p(2 I (n, s)). The data from two-alternative experiments suggest that there 
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is little or no bias when the presentation probability is 4 and the payoff 
matrix is symmetric, so we will assume that c' = 0 for such studies. The 
common response probability, the probability of a correct response, is de- 
notedp,(C) -2 for the number of alternatives and C for "correct." Given 
an estimate ofp,(C) from data, we can calculate the corresponding normal 
deviate 2d/ J?o = &dl, where d' is the sensitivity parameter used in the 
analysis of the corresponding Yes-No experiments. Thus d' can be 
independently estimated from both Yes-No and two-alternative forced- 
choice experiments. Later, in Sec. 2.4, we compare Yes-No and forced- 
choice estimates for two sets of data. 

2.2 Choice Analysis 

If we assume that the choice model, Eq. 5 and Assumptions 1 to 3, 
hold, and if we denote q(s, n) by q, b(N)/b(Y) by b, and recall that 
q(s, s) = 1, then the scale values for the Yes-No experiment are 

Response 

Y N 

Stimulus 

Presentation n 

The corresponding confusion matrix is 

Y N 

In what follows, we usually write down only the tables of scale values 
and not the corresponding probability tables, which are obtained by 
dividing each scale value by the sum of the scale values in its row. 

As with signal detectability theory, this model describes the response 
frequencies perfectly: there are two parameters to account for two 
independent probabilities. The equations for the parameters are 
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Our interest in 7 and b is not as simple transformations of the Yes-No data 
but in the possibility that they can be used to predict other data. 
This possibility stems from our interpretation of the two scales: under 
otherwise fixed experimental conditions and for a given subject, 7 is 
supposed to depend only upon the stimuli and b, upon the payoffs, 
presentation probabilities, and instructions. I t  is believed that 7 is a 
measure of the subject's detection sensitivity, just as d' is in the first model, 
and that b is a bias which, like c,  reflects the relative attractiveness to him 
of the two responses. 

The matrix of scale values for the two-alternative, forced-choice design 
is 

I 2 

By Assumption 2, we know that 

and because S cY x Y,  it is reasonable to invoke Assumption 4 under 
the same conditions as we did the independence assumption in the signal 
detectability model (e.g., a noise background) yielding 

= 1- 42 log 71" 

= [-log 7'z']8. 

Thus, by Assumption 1, 

v(01, s ) ,  (3, n)) = ~ ( ( 3 ,  n,, (n, s)) = v"?, 
and so, letting 6' = b(2)/b(l), the matrix of scale values reduces to 

where 7 is the Yes-No detection parameter. Note that b' = 1 corresponds 
to no response bias. 

Again, there is no question about the   nod el reproducing the data. What 
is not automatic is that the estimate of 7 from the Yes-No data will be the 
same as that from the forced-choice data, as is alleged by the theory. 
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Before turning to  the threshold analysis of these two detection experi- 
ments, a possible objection to our analysis must be examined. It may be 
quite misleading to  treat the Yes-No experiment as one in which an  
absolute identification of s or  n is made, for in many studies the subject 
hears the noise background both before and after the marked interval in 
which the stimulus may occur. That being so, it seems more realistic to  
say that the two stimulus presentations are ,n,, n ,  n,\ and (n,, s, n,), 
where n,  denotes the noise before and n,, the noise after the interval. If 
these three intervals are uncorrelated, we may invoke Assuniption 4 as 
follows : 

But q(n,, n , )  = ~ ( n , ,  n,) = 1 ,  hence log ~ ( n , ,  n,,) = log ~ ( n , ,  n,) = 0, and 
SO 

rl(\nb, S ,  n,\, (n,, n,  nu)) = ~ ( s ,  n)  = 7 .  

Thus the more precise analysis leads to the same result as the simpler one, 
provided that the effects in successive intervals are uncorrelated. 

2.3 Threshold Analysis 

Let us suppose that when the stimulating conditions are held constant 
the two cut-offs k and k' of the threshold model are fixed quantities 
independent of the presentation probabilities, the payoffs, and the experi- 
mental design. So the true detection probabilities can be written simply as 
q(s) and q(n). For the Yes-No design, we may summarize the "internal" 
detection observations as 

Observation 
- 

D D 

Stimulus 

Presentation n 

These, however, are not the response probabilities. 
Suppose that the subject wishes to  reduce his false-alarm rate-Yes 

responses to  noise-below the true rate q(n);  then we assume that in 

addition to saying No  to all 5 observations he also falsely responds N o  
to some proportion 1 - t of his D observations. This means, therefore, 
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that he responds Yes to only a proportion t of his D observations, that is, 
if P( Y I n) < q(n), 

P( Y I s) = tq(s) 

P( Y ( n) = tq(n), 
(1 5) 

where 0 < t ,< 1. Similarily, when he wishes to increase his rate of 
correct Yes responses above his true rate q(s), albeit at the same time 
increasing his false-alarm rate above q(n), he is assumed to say Yes to all 
D observations and to some proportion u of his 5 observations, that is, 
if p( Y 1 n) > q(n) 

P( Y 1 3) = q(s) + u[l - q(s)I 

p(Y ( n) = q(n) + 4 1  - q(n)l, 
(16) 

where 0 ,< u < 1. 
It is clear that even if we knew which of these processes, Eq. 15 or 16, 

a subject had used, we would still have no way of testing the model 
because there are three parameters, q(s), q(n), and t or u, to account for 
two independent probabilities. Moreover, going to the two-alternative 
forced-choice design as we did for the other two models does not provide 
us with a test; however, in the next section testable conclusions are derived. 

Before describing one possible threshold analysis of the two-alternative 
forced-choice experiment, we examine the familiar technique to correct 
for guessing (see Blackwell, 1953; Swets, 1961b; and Tanner & Swets, 
1954a). The so-called high-threshold model underlying this technique 
assumes that the true probability of a false alarm, q(n), is zero but that the 
observed rate is positive because the subject inflates the number of Yes 
responses to s beyond its true value q(s). Thus Eq. 16 represents the 
situation, and, with q(n) = 0, it follows that u = p(Y I n). Substituting 
this into the expression for p(Y 1 s) and solving yields 

This formula is frequently recommended to "correct" threshold data for 
guessing. Because this correction involves the rather strong assumption 
that q(n) = 0, which, as we shall see in the next section, is surely incorrect, 
I very much doubt that this "correction" should be made. 

On each trial of a two-alternative forced-choice experiment, the subject 
is confronted with two Yes-No determinations-one for each time interval. 
This means that there are four possible observation states, (D, D), (D, D), 
(D, ,D), or ( D ,  B), where D denotes a detection observation in the Yes- 
No situation and D, a nondetection observation. The first, (D, D), 
surely suggests making response 1 ; the second, response 2; but the last 
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two give him no hint how to respond. Presumably, these are the observa- 
tions he should bias, at least when there is nothing to drive him to extreme 
biases. We assume this. 

To write the equations for the response probabilities, we need to know 
the probabilities of each of these observation outcomes for each of the 
presentations. As with the other two models, we assume that successive 
stimulus effects are independent, so that, for example, the probability of a 
(D, b) observation when (s, n) is presented is simply q(s)[l - q(n)]. The 
other cases are similar: 

where u and w are biasing parameters such that 0 < u, w < 1. Again, the 
model has too many parameters to permit any check on it with just 
forced-choice data. In Sec. 3 we discuss experiments in which it, as well 
as the other models, can be tested. 

2.4 Comparison of Models with Data 

Swets (1959) reported data for three subjects run in both Yes-No and 
two-alternative forced-choice designs. The stimuli were 1000-cps tones 
of 100-ms duration at several different energy levels in a background of 
white noise. Five hundred observations were obtained from each subject 
in each energy-design condition. The presentation probabilities were 
approximately 4 and a symmetric payoff matrix was used. The data, 
which Professor Swets has kindly provided me, and the estimates of d' 
for two different designs are shown in Table 1. 

Shipley (1961) also ran three subjects in both designs, using a back- 
ground of white noise and 500- and 1000-cps stimuli at one energy level 
each. A total of 1600 observations were obtained in each condition for 
each subject using presentation probabilities of 4 and a symmetric payoff 
matrix. The data and d' estimates are shown in Table 2. With the 
exception of subject 3 on the 1000-cps stimulus, all pairs of estimates are 
within 10 per cent of each other. 

Shipley's estimates seem considerably more consistent than Swets's, 
but in large part this is due to the increased number of observations. TO 
see this, suppose d' = 1.2 and p( Y I n) = 0.2, then p( Y I s) = 0.640. An 
increase of 10 per cent in d' and p(Y I n) = 0.2 yields p(Y ( s) = 0.683. 
With 250 s presentations, a difference of 0.683 - 0.640 = 0.043 corre- 
sponds to about 1.4 standard deviations, whereas with 800 presentations 
it corresponds to about 2.5 standard deviations. 
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These same data are reanalyzed in terms of the choice model in Tables 
3 and 4, and much the same pattern is exhibited as for the detectability 
model. For example, the largest difference in Table 4 is in the same place 

Table 1 Yes-No and  Two-Alternative Forced-Choice Acoustic 
Data (Swets, 1959) and the Corresponding Estimates of d' 

Yes-No Two-Alternative 
Subject SIN in db p(Y / s )  p(Y I / I )  p(l  I ( s ,  n ) )  I 1 ( I  s )  d' Forced-Choice d' 

1 9.4 0.793 0.226 0.824 0.187 1.57 1.29 
14.5 0.872 0.180 0.931 0.060 2.05 2.15 
16.6 0.902 0.120 0.963 0.07 1 2.45 2.29 

2 9.4 0.753 0.288 0.670 0.149 1.24 1.03 
11.7 0.771 0.254 0.777 0.194 1.40 1.14 
14.5 0.833 0.295 0.854 0.145 1.51 1.50 
16.6 0.867 0.232 0.855 0.078 1.83 1.83 

3 9.4 0.731 0.195 0.835 0.149 I .48 1.43 
11.7 0.836 0.254 0.870 0.142 1.65 I .56 
14.5 0.816 0.169 0.959 0.125 1.85 1.96 
16.6 0.895 0.149 0.953 0.037 2.29 2.45 

The stimuli were 1000-cps toncs of 100-ms duration in noise of 50 db re 0.0002 d/cm2; 
500 observations were made on each subject at each energy level for each condition. 
Presentation probabilities of about 4 and symmetric payoff matriccs were used. 

Table 2 Yes-No and Two-Alternative Forced-Choice Acoustic 
Data (Shipley, 1961) and the Corresponding d' 

Stimulus 1 

Yes-No 
Subject p ( Y  1 s) p( Y 1 tz) p(1 1 (s, a ) )  p(2 ( (n, s)) d' Forced-Choice d' 

1 0.768 0.148 0.895 0.880 1.78 1.72 
2 0.712 0.258 0.798 0.796 1.20 1.18 
3 0.746 0.216 0.836 0.866 1.44 1.48 

Stimulus 2 

1 0.695 0.201 0.835 0.838 1.35 1.38 
2 0.675 0.199 0.795 0.812 1.30 1.20 
3 0.693 0.287 0.791 0.832 1.07 1.25 

Each stimulus lasted for 100 ms in a 500-ms interval and was imbedded in wide band 
noise at 0.0435 volt across the terminals of the ear phones. Stimulus 1 was 500 cps at 
0.0023 volt and Stimulus 2 was 1000 cps at 0.0026 volt. Each presentation of each 
condition occurred approximately 800 times. Presentation probabilities of 4 and 
symmetric payoff matrices were used. 

and is of comparable magnitude. In both analyses the Yes-No parameters 
do not seem to be consistently larger or smaller than the forced-choice 
ones. 
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Thus, although the two theories differ in their approach, it is evident 
that they do not differ appreciably in their predictions from one simple 
detection design to another. To see this more vividly, we make the 
following calculation. For each of several different values of d', determine 
from Eq. 9 the values of p(Y I s) and p(Y I n) corresponding to different 

Table 3 Estimates of q for Swets's (1959) Da t a  
7 

SIN in 
Subject db Yes-No Forced-Choice 

See Table 1 for a description of the experimental con- 
ditions. 

Table 4 Estimates of q for Shipley's (1961) Data  

Stimulus 1 Stimulus 2 

Subject Yes-No Forced-Choice Yes-No Forced-Choice 

See Table 2 for a description of the experimental conditions. 

choices of c. Elliot's (1959) tables of d' are handy for this. For these pairs 
of probabilities, determine q from Eq. 13. A plot of the logarithm of q 
versus d' is shown in Fig. 5. It is evident that the relation is approximately 
linear and that the correlation is high. The points that differ the most 
from the main trend are those for which at least one of the probabilities is 
near 0 or 1. 

As noted earlier, the threshold model has too many parameters to be 
tested with these data. 
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Fig. 5. Relationship between the stimulus parameters d' and 7 of the signal detectability 
and choice models for the Yes-No design. 

3. ISOSENSITIVITY CURVES 

It has been suggested that the parameters d', 17, q(s), and q(n) of the three 
theories represent the subject's sensitivity to stimuli and that c, 6, t ,  and u 
are biases more or less under his control. Among the experimental 
conditions that are thought to affect the biases, but not the stimulus 
parameters, are the presentation probabilities, the payoffs, and the names 
given to the response alternatives. It is, of course, necessary to show 
empirically that there is some justice to these interpretations and, if there 
is, to examine how the parameters are related to objective features of the 
experiment. The justification we consider here; the dependence of model 
parameters upon experimental parameters is treated in Secs. 5 and 6. 

Suppose that we have a physiologically stable subject (no drugs, 
minimal fatigue, etc.), and suppose that d', 17, or q(s) and q(n), as the case 
may be, depend only upon the stimulus and noise, then up to errors due 
to binomial variability our estimates of them should be the same no matter 
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what instructions, presentation probabilities, and payoffs are used. This 
should be true in spite of the fact that varying these factors produces 
changes in the response probabilities. For example, if in a Yes-No design 
one of the two types of errors is very costly, we anticipate that subjects 
will bias their responses away from the one that makes this expensive 
error possible. In terms of the models, the payoffs affect either their 
choice of c, of b, or o f t  or u. Nevertheless, if one of these models is correct, 
then as the bias parameters change the response probabilities are con- 
strained by one of the Eqs. 9, 12, 15, or 16. That is to say, each model 
establishes an exchange relation between the two probabilities so that if 
one probability is altered the other is also and in a predetermined way. 
To find the equation for this relation, one merely eliminates the biasing 
parameter from the pair of equations determiningp(Y I s) and p(Y I n). 
The resulting function depends upon the stimulus parameters but not upon 
the biases. Plots of these relations I shall call isosensitivity  curve^.^ In the 
literature they are commonly called R.O.C. curves, which stands for 
receiver operating characteristic curves, a term used in the original engineer- 
ing publications. Because this seems an unfortunate psychological phrase, 
I suggest that it be changed. 

The isosensitivity curves for the choice model can easily be written 
down. From Eq. 12, we know 

and, eliminating b, we obtain 

One cannot write an explicit function for the isosensitivity curves of the 
signal detectability model because Eq. 9 involves integrals of normal 
distributions, but it is easy to calculate them numerically. The curves for 
the two theories, along with detection data for a pure tone in noise 
(Tanner, Swets, &Green, 1956), are shown in Fig. 6. These data were 
generated by varying P from 0.1 to 0.9 in steps of 0.2; each point is based 
upon a total of 300 observations. It is clear that the theories produce 
substantially the same curves and that both are in reasonable accord with 
the data. 

Because "sensitivity" derives from Latin, one should use the term "equisensitivity," 
but the common use of "iso" in similar scientific contexts makes the term of mixed 
origin seem more natural to nonpurists. 
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Fig. 6.  Typical signal detectability and choice model isoscnsitivity curves for Ycs-No 
design. The  data points, reported in Tanner, Swets, & Green (195G), wrrc obtaincd by 
presenting pure tonrs in noise, wit11 P varied from 0.1 to 0.9 in steps of 0.2 and a fixed 
symmetric payoff' matrix. 

Note that the theoretical curves in Fig. 6 are symmetric about the main 
diagonal that runs from (0, 1 ) to (1,O). Not all data are symmetric, 
however, as the visual ones shown in Fig. 7 for one of four subjects 
studied by Swets, Tanner, and Birdsall (1955, 1961) indicate. The empirical 
isosensitivity curve was swept out by varying the payoffs and holding 
P = 4. The data for the other subjects are similar. I t  is evident that these 
data reject both the choice and the equal-variance signal detectability 
models. The theoretical curves of Fig. 7, one of which corresponds 
reasonably well with the data, were obtained from the detectability model 
by assuming that the stimulus plus noise standard deviation is 1 + id'  
times the noise standard deviation. For these data, d' is in the range of 2 to 
4, so the factor is 1.5 to 2. Thus a second stimulus parameter allows 
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detectability theory to account for these data, but I am at a loss to under- 
stand why adding a faint tone to the noise should have such major reper- 
cussions on the variance of the distribution of effects. 

In all likelihood, there is some plausible way to add a second stimulus 
parameter to the choice model so that it does just about as well, but none 
has yet been suggested. 

The threshold theory isosensitivity curves are obtained by eliminating t 
from Eq. 15 and u from Eq. 16: 

This equation represents two line segments: one from (0, 0 )  to (q(n), q(s)), 
which is referred to as the 1on.er limb, and the other, the upper limb, from 
(q(n), q ( 4 )  to ( 1 ,  1 ). 

Fig. 7. Nonsymmetric signal detectability isosensitivity curves for the Yes-No design. The  
data p o i t ~ ~ s  were obtained by presenting local increases in light intensity, with P = 4 and 
different payotf matrices. See text for an explanation of the theoretical curves. Adapted 
with permission from Swets, Tanner, & Birdsall (1961, p. 319). 
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Fig. 8. Threshold isosensitivity curve fitted by eye to subject 1 acoustic 
plotted in Fig. 6. The theoretical crosses are explained in Sec. 5 .2 .  

data previously 

The traditional "correction-for-guessing" procedure assumes that 
q(n) = 0, in which case the lower limb runs along the ordinate to q(s) at 
which point the upper limb departs for (1, 1). It is abundantly clear that 
the q(n) = 0 model does not describe the data of Figs. 6 or 7; as a result, 
Tanner and Swets (1954a) concluded that these detection data reject the 
high-threshold hypothesis. Sometimes their conclusion has been inter- 
preted as a rejection of all sensory thresholds, but the more general 
threshold model appears to be quite adequate. In Fig. 8, threshold curves 
are fitted to Tanner, Swets, and Green's (1956) subject 1 data and in Fig. 9 
to those of Swets, Tanner, and Birdsall's (1955) subject 4. These theo- 
retical curves are comparable to those of Fig. 7, not to the symmetric ones 
of Fig. 6, because the threshold model, like the unequal-variance signal- 
detectability model, has two estimated parameters. The threshold curves 
appear to be just as satisfactory as the signal-detectability ones. 

I shall not carry out the parallel development of isosensitivity curves 
for the two-alternative forced-choice design using the detectability or 
choice models. Suffice it to say that the same equations result, except that 
dl/JZ replaces d' and 17dz replaces 17. The isosensitivity curve for the 
threshold model is obtained by subtracting the second expression in Eq. 18 
from the first and rewriting the result as 
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Fig. 9. Thresholcl isosensitivity curve fitted by eye to subject 4 visual data previously 
plotted in Fig. 7.  

This represents a straight line with slope 1. By setting 

in Eq. 18, we see that the isosensitivity curve passes through (q(n), q(s)). 
Thus, when the stimulating conditions are the same, the Yes-No and forced- 
choice isosensitivity curves must be related, as shown in Fig. 10; so, 

1.1 

Lower limb 
1.0 

Upper limb 

Fig. 10. The geometry relating the threshold Yes-No and two alternative forced-choice 
isosensitivity curves. 
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aside from the ambiguity about whether the Yes-No data point lies on 
the upper or lower limb of its isosensitivity curve, the data from the two 
experiments provide an estimate of the true detection probabilities. This 
method seems a suitable replacement for the incorrect correction-for- 
guessing procedure. Examples of such estimates can be found in Luce 
(1963), or they can be reconstructed from the raw data presented in Tables 
1 and 2. 

For some reason not apparent to me, no one has yet reported two- 
alternative forced-choice data where the presentation probabilities or 
payoff function are varied, and so we do not know what the empirical 
isosensitivity curves look like. 

In summary, the following conclusions seem justified. 

1. The models with but one stimulus parameter, including the threshold 
model that underlies the correction-for-guessing equation (17), are 
inadequate to account for existing visual data. In addition, the 
q(n) = 0 threshold model is incorrect for acoustic data. 

2. The detectability and threshold models that have two estimated 
stimulus parameters both handle the visual data quite well. 

3. The stimulus parameters for either of these models can be estimated 
from empirical Yes-No isosensitivity curves, which can be generated 
by varying the presentation probability, the payoffs, or both. In 
addition, a simple scheme exists to find the "true" threshold proba- 
bilities, which uses data from just one run in each of the Yes-No 
and two-alternative forced-choice designs. 

4. COMPLEX DETECTION 

Three somewhat more complex detection designs are our next concern. 
The first is the multiple-look Yes-No design in which there are m dis- 
tinct intervals, all or none of which contain the stimulus. Thus S = 

{(s ,  S ,  . . , s) ,  (n ,  n, . . . , n)} ,  R = { Y,  N ) ,  and L ( Y )  = Js, S ,  . . . , S )  and 
L ( N )  = (n ,  n, . . . , n) .  

The second is the k-alternutire forced-choice design in which there are k 
intervals, exactly one of which contains the stimulus. If we let s, denote 
the presentation in which s occurs in the ith interval and n in all others, 
S = {sl, s 2 , .  . . , sP} ,  R = { l , 2 , .  . . , k ) ,  and r(r) = s, for r E R. 

The third is the multiple-look k-alternutice forced-choice design in 
which the k-alternative forced-choice presentation s, is repeated a total of 
m times. Thus S = {(s,, s,, . . . , s,), (s,, s,, . . . , s,), . . . , (s,, s,, . . . , s,)}, 
R = (1, 2, . . . , k ) ,  and ~ ( r )  = (s,, s,, . . . , s,) for r E R. 

For each of these designs, we assume that the noise is uncorrelated on 
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successive presentations, except when explicitly stated otherwise. In 
particular, this means that successive presentations cannot simply be tape 
recordings of the initial one. The reason for imposing this experimental 
limitation is to permit us to assume independence of effects in the analysis, 
as was done earlier in the discussions of the two-alternative forced-choice 
design. 

4.1 Signal Detectability Analysis 

Let Xi denote the logarithm of the likelihood ratio of the observation 
on the ith look of the multiple-look Yes-No experiment; then it is assumed 

,n, 

that X = 2 Xi is the random variable used to arrive at a decision. 
i= l  

First, suppose noise is presented rn times. If each presentation is independ- 
ent and normally distributed with mean 0 and standard deviation a, then 

X is normally distributed with mean 0 and standard deviation a, = J&. 
Similarly, if the stimulus is presented each time and the presentations are 
independent, then the mean is d,, = rnd and the standard deviation is 

a ,  = Jia. Thus the effective detection parameter is 

and so we can predict multiple-look data from simple Yes-No data 
(Swets, Shipley, McKey, & Green, 1959). 

The generalization of the two-alternative signal detectability model to 
the k-alternative forced-choice design is comparatively complicated if 
response biases are included and very simple if they are not. 1 shall 
sketch the general idea of the former and carry out the latter in detail. 

As presented in terms of differences, it is not easy to see how to generalize 
the two-alternative analysis; however, if we view it in a different but 
equivalent way, the outlines of the generalization become clear (Swets & 
Birdsall, 1956). As before, suppose that the observations in the two 
intervals are independent, in which case it is plausible to represent the 
two decision axes as orthogonal coordinates in the plane. Joint normal 
distributions for (s, n )  and for (n,  s )  are assumed to exist and to have equal 
variances. When projected on either axis, these distributions generate the 
usual one-dimensional noise and signal distributions, the means of the 
noise distributions being at the origin. This is diagrammed in Fig. 11. 
The observational random variable is the pair (X,, X,), and the decision 
rule is no longer characterized by a point but by a division of the plane 
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Fig. 11. The two-dimensional signal detectability representation of the two-alternative 
forced-choice experiment. The dotted lines represent the family of decision rules that 
correspond to the cutpoints in the decision axis representation. 

into two nonoverlapping regions. Under reasonable assumptions about 
the subject's goals, it can be shown that the division of the plane must be 
by a line located a t  45" between the two decision axes; typical ones are 
shown dotted. I t  is not dificult to see that our original representation in 
terms of differences is simply the projection of the present model onto a 
plane orthogonal both to this family of 45" lines and to  the decision plane. 
The intersection of each 45" line with this plane corresponds to a possible 
cut-point c'. 

The generalization to k-alternatives is now clear. There are k random 
variables, X,, X,, . . . , X,, corresponding to observations in each of the 
intervals. For each stimulus presentation, si, where the stimulus is in the 
ith interval and noise is in the others, there is a density function having 
the value p(x,, x,, . . . , x, I si) at  X, = x,, X, = x,, . . . , and X, = x,. 
These are assumed to be independent multivariate normal distributions 
with equal variances. The decision rule is a partition of the k-dimensional 
Euclidean space into k response regions; the simplest rule involves a 
division of the space by hyperplanes. The mathematics required for 
specific numerical calculations is, of course, rather clumsy, and, so far as 
I know, no actual work has used this general form of the model. . 

If, however, we assume that the payoffs are symmetric and that the 
subject introduces no biases, matters are very much simpler. The subject 
makes an observation, X,, in each interval, and he is assumed simply to 
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say that the stimulus is located in the interval having the largest observa- 
tion. Because there is no bias, it does not matter which interval actually 
contains the stimulus-the probability of a correct response, pk(C), is 
the same for all. The probability density that s generates an effect x that 
is the largest is simply p(x ( s) times the probability that all k - 1 of the 
noise observations are less than x, that is, p(x 1 s) P(x ( n)"], where ,. %. 
P(x I n) = J ' p(i I n) di. Because the particular value of the largest value 

- m 

is immaterial to the response made, we integrate over all x to obtain 

Of course, we assume that p(z I s) and p(x I n) are normal, have the same 
variance, and are separated by an amount d, just as in the Yes-No model. 
That being so, an estimate of d' from either the Yes-No or two-alternative 
forced-choice data is sufficient to predict pk(C) from Eq. 23 (Tanner & 
Swets, 1954a). 

The analysis of the multiple-look k-alternative forced-choice design 
is analogous to that for the multiple-look Yes-No design (Swets, Shipley, 
McKey, & Green, 1959). The subject is assumed to make observation 

m. 

X i j  in interval i on the jth observation. The sums 2 X i j  are calculated, 
j = 1  

and then the subject chooses the interval having the largest sum. Because 
? I &  

the X t j  are assumed to be independent and normally distributed, 2 Xij is 
j = l  

normally distributed with mean 0 and standard deviation 2/% when n 
is presented in interval i and with mean rnd and standard deviation 2/& 
when s is presented. Thus Eq. 23 can be used to calculate the probability 
of a correct detection. Note that if dl(k) denotes the value of d' estimated 
from the simple k-alternative forced-choice design and dml(k) denotes 
that corresponding to the m-look design, they are related by 

dmt(k) = Jrn d'(k). (24) 

4.2 Choice Analysis 

By repeated use of the independence Assumption 4, it is easy to see 
that the choice model matrix of scale values for the multiple look Yes-No 
design is 

Y N 



I d 0  D E T E C T I O N  A N D  R E C O G N I T I O N  

The argument is much the same as that used for the two-alternative forced- 
choice design. 

Letting s, denote the presentation in which the stimulus is in intcrval i, 
then by a similar argument we obtain as the matrix for the k-alternative 
forced-choice design 

1 2 . . .  k 

where I have omitted writing the response biases. When the biases are 
equal-the assumption we shall make in analyzing data-the equation 
for the probability of a correct response is seen to  be 

When the biases are not assumed equal, then it is easy to see from Eq. 26 
that 

and 

these equations can be used to estimate the parameters q  and h(i). 
Because ( q d i )  \, = qdG, the matrix for the multiple-look k-alternative 

forced-choice design is 
I . . ,  k 

- - - 

\ 2.n . . . ,/I 1 s . .  s I t, 

where again I have not written the biases explicitly 
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4.3 Threshold Analysis 

In the multiple look Yes-No experiment the threshold model says that 
the subject will observe some sequence of D's and D's on the basis of which 
he must say Yes or No. We assume that these observations are independent 
and that he bases his response upon the number of D's that occur; 
specifically, that when there are m looks he says Yes if and only if the 
number of D's is A-,,, or  greater. I t  is easy to see that 

The two most extreme cases are when k,, = 1, that is, when the subject 
says Yes if at  least one D observation occurs, in which case 

P ( Y  I $1 = 1 - [ I  - q(s)lm and p( Y 1 n) = 1 - [ I  - q( t l ) ]m,  

and when X ,,, = m, that is, when the subject says Yes only if the D observa- 
tion occurs for all presentations, in which case 

p( Y 1 s) = q(s)" and p(Y 1 t ~ )  = q(n)". 

A more plausible assumption is something like majority rule (we suppose 
that he says Yes 50 per cent of the time when there is an equal number of 
D's and D's). N o  simple equation can be written for this case, but it is 
easy to  calculate specific values from Eq. 29. Note that the response 
probabilities for successive odd-even m's are identical. 

For the k-alternative forced-choice design, we assume that the responses 
are unbiased as in the other two models. If the subject obtains D observa- 
tions in m of the X- intervals, we assume that he chooses one of these 
intervals at  random. Luce (1963) has shown that this implies 

1  
P ~ C )  = - ( d s )  - [ I  - q(n)lkP1[q(s) - q(n)]} .  

kq(n) 
(30) 

Note that 
pz(C) = + q(s) - q(n)l, 

and so two-alternative forced-choice data determine q(s) - q(n), but not 
q(s) and q(n). However, for k > 2, the value of p,(C) depends upon q(s) 
and q(n) separately, not just upon their difference. This is to be contrasted 
with the other two models in which the p,(C) data uniquely determine 
pl,(C>. 

No threshold analysis for the multiple look k-alternative forced-choice 
design has yet been suggested. 
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4.4 Comparison of Models with Data 

There do not appear to be any published raw data for the multiple-look 
Yes-No design, and so all we can do is attempt to compare the several 
theories. In all three cases there is a free parameter which gives one a good 
deal of freedom: neither the bias parameters in the detectability and 
choice models nor the value of k,,, in the threshold model need be the same 
as the number of looks is changed. If we assume no bias in the first two 
models and suppose that, for rn = 1, p(Y  / s )  = $ and p(Y  I n) = 4, then 
we get the solid points on the diagonal of Fig. 12. The two models differ 
so little that the separate points cannot be shown on a graph of this size. 
The majority rule for the threshold model also yields points on the diagonal, 
but they do not approach the corner quite so rapidly. The threshold 
m = 7 and 8 point is nearly the same as the detectability and choice 
m = 5. The other two sets of threshold points are for the extremes 
k ,  = 1 and k ,  = rn, and it is clear that by other choices for k ,  almost 

4 Choice and signal detectability 

0.4 o Majority rule threshold 
A k = 1 threshold 
+ k = rn threshold - 

- 

- - 

0 I I I I 1 I I I I 
0 0.2 0.4 0.6 0.8 1.0 

~ ( Y l n )  

Fig. 12. Typical predictions of the several models for the multiple look Yes-No design. 
The  parameter m denotes the number of independent repetitions of the stimulus plus 
noise or of the noise alone. 
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any other curve to the left and above these extremes can be generated. 
Much the same is true for the other two models because of the freedom in 
choosing the bias parameter. 

In addition to the Yes-No and two-alternative forced-choice data given 
in Table 1, Swets (1959) collected four-alternative forced-choice data on 
the same subjects. Using Eq. 23, or  Elliott's (1959) tables, p,(C) for the 
detectability model can be predicted from the observed values ofp,(C) and 

T a b l e  5 Observed a n d  Predicted Values of P,(C) for Swets's 
(1959) d a t a  

Subject Threshold Parameters Observed Predicted 

Lower 
Threshold 

Upper 
Limb Limb 

EINo Signal Upper Lower 
in d b  q(n) q(s) q(n) q(s) Detectability Choice Limb Limb 

See Table 1 for a description of experimental conditions. 

for the choice model from Eq. 27. The predictions for the threshold model, 
Eq. 30, depend upon knowing both q(n) and q(s). These may be estimated 
from the Yes-No and two-alternative forced-choice data, with, however, 
the upper limb-lower limb ambiguity inherent in the Yes-No model. 
The details about how this was done can be found in Luce (1963). Both 
sets of estimates and the predictions for all three models are shown in 
Table 5. I t  is clear that there is little to  choose between the detectability and 
choice models. The threshold model is adequate only if we admit the 
possibility that the subjects did not all operate on the same limb and that 
some may have shifted from one limb to the other as the stimulus energy 
was increased. Both seem like reasonable possibilities. 

Swets (1 959) also reported p,(C) estimates for three subjects and k = 2, 
3, 4, 5, and 8. Assuming equal biases, so that Eqs. 23 and 27 can be used, 
the detectability and choice models can be compared. The results are 
shown in Fig. 13, and they clearly favor the detectability model. T o  what 
extent this conclusion depends up011 the assumption of equal biases is not 
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Fig. 13. Typical predictions of the signal detectability (solid curves) and choice (dotted 
curves) models for the unbiased k-alternative forced-choice design. The dala points for 
these subjects are from Swets (1959). 

clear. If, for example, the biases were U-shaped, so that the relative 
frequency of the first and last responses was in excess of llk and of the 
middle ones less than llk, then it is quite possible that p,(C) would be 
artificially inflated and that p,(C), k > 5,  would be artificially deflated. 
If that were the case, the data surely would not support the choice model 
and, depending upon the magnitude of the effect, might very well not 
support the signal detectability model. On the other hand, if the biases 
formed an inverted U,  then p,(C) could easily be deflated and p,(C), 
k > 5,  inflated. I f  the effect were large enough, this could cause us to 
accept the choice and reject the detection model. Swets does not indicate 
the nature of the biases in his data, but my best guess (based upon biases 
in recognition confusion matrices) is that they were of the first type, in 
which case the choice model is inadequate to account for these data. Until 
more detailed data are available. however, no very certain decision is 
possible. 

Without Yes-No data on the same subjects under the same conditions, 
it is impossible to predict p,(C) uniquely using the threshold model. The 
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best we can do is to calculate the extreme limits of Eq. 30 for several 
different values of p,(C). These are shown in Fig. 14 along with the data 
points again. 

Swets, Shipley, McKey, and Green (1959) reported an acoustic study of 
the multiple-look four-alternative forced-choice design, using m = 1, 
2 ,3 ,4 ,  and 5. Assuming again that the biases are equal, 7 can be estimated 
from the probability of a correct response when rn = 1, and then the other 
values are predicted from 

Fig. 14. Typical upper- and lower-boutld   re dictions of the threshold model for an un- 
biased k-altcrnati\-e forced-choicc design. T h c  data points for thesc subjects are thc same 
as those shown in  Fig. 13. 
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which follows from Eq. 28. The signal detectability analysis is similar, 
except that Eq. 24 is used. The results are shown in Table 6. The detecta- 
bility model predicts a somewhat more rapid improvement in correct 
responses than is shown by the subjects; the choice model is closer to the 
behavior. Because each probability is estimated from 600 observations 
and because the theoretical probabilities are so near 1, some of the devia- 
tions of the detectability model are significant if not spectacular. 

Tab le  6 Multiple-Look Four-Alternative Forced-Choice D a t a  
Reported by  Swets, Shipley, McKey, and Green (1959) 

Predicted from rn = 1 data 
Number of Observed 

Subject Observations Data Signal Detectability Choice Model 

The noise was 35 db re 0.0002 d/cm2 and the signal a 1000-cps tone at 12.5 db 
measured in terms of 10 log,, EIN,. 

In connection with the independence assumption that plays such a 
significant role in all three models, the following result is of considerable 
importance. Swets et al. repeated the last experiment using a tape recording 
of the stimulus plus noise or of the noise alone for the several presentations. 
Instead of gradually improving, as they do with uncorrelated noise 
(Table 6) and as is predicted by the theories, the subjects exhibited little 
or no improvement beyond two presentations. This suggests .that it is 
perfectly possible experimentally to render the independence assumption 
incorrect to a degree that is quite noticeable. 

In evaluating these studies, it should be kept in mind that none of them 
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was designed to test among the three models but rather to decide about the 
adequacy of the signal detectability one. So far as these data are concerned, 
there is nothing in my opinion that clearly favors one model over another. 
There is some suggestion in the k-alternative forced-choice data that the 
choice model is inferior to the detectability one, but the reverse is true for 
the multiple-look four-alternative data. Because of the threshold model's 
larger number of parameters, none of these experiments adequately 
taxes it. 

5.  T H E O R I E S  O F  T H E  BIAS P A R A M E T E R S  

To a traditional psychophysicist, what we have been doing so far in 
this chapter must seem strange, if not totally irrelevant to his interests. 
He wants to know the laws relating responses to well-controlled, specifiable 
stimuli, and yet nothing at all has been said about them. The reason is 
that many contemporary psychophysicists do not believe that this problem 
is nearly so straight-forward as it seems. The current view is that it 
should be divided into three distinct parts. The first is a theory of responses 
that relates responses to responses, not to stimuli. Such theories-they 
are what we have discussed so fa r4onta in  estimable parameters, such 
as 7, dl,  or q(s) and q(n) and b, c, or t and u, which are thought to depend 
upon and to summarize the relevant decision-making effects of the stimulat- 
ing and reward conditions of the experiment. Because such parameters 
can be estimated from the response data, there is actually no need to 
measure the physical properties of the stimuli or the characteristics of the 
outcome structure of the experiment; they need only be under control and 
reproducible at will. This sort of theory, as we have seen, uses the data 
from one experiment to predict the results of others having different 
designs but involving the same stimuli, background. and residual environ- 
ment. 

Once such a theory is developed and has received enough confirmation 
so that one feels that it may be approximately correct, one can begin to look 
into the other two problems: first, relations between the stimulus param- 
eters of the theory and measurable properties of the stimuli, and second, 
relations between bias parameters and other aspects of the experimental 
conditions. There is precious little point, however, in trying to establish 
such relations until the response-response theory has been rather carefully 
tested. 

If we are correct in supposing that parameters of the one class measure 
the subject's sensitivity to the stimuli and those of the other measure 
response biases that are under his control, then we must anticipate separate 
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theories relating each to certain aspects of the experimental situation. This 
section presents two quite different theories for the bias parameters. The 
next discusses theories of the sensitivity parameters. 

5.1 Expected Value 

As we have seen in Sec. 3 on isosensitivity curves, experimental manipu- 
lations of either the presentation probability or of the payoff matrix 
appreciably affect the response probabilities, even when the stimulating 
conditions are fixed. This suggests that a theory of the bias parameters 
must involve at least these two experimental factors. Broadly speaking, 
mathematical psychologists have come up with two ideas about this 
dependence. The one that we look into in this subsection stems mainly 
from the economic and statistical literature. It says that subjects choose 
the parameters to optimize something. The other, which is discussed in 
the next subsection, says that subjects continually adjust the parameters 
in an "adaptive" fashion-they learn. 

Suppose that the presentation and payoff structure in the Yes-No 
design is 

Presentation Stimulus Response 
Probability Presentation Y N 

P S 

1-P n 

where the oij are sums of money. One reasonably sensible criterion that a 
subject might use is to select that bias parameter that maximizes his 
total expected money return during the course of the experiment. Because 
the trials are assumed to be independent and because the response proba- 
bilities are assumed to be constant, this is the same as selecting it to 
maximize the expected value of a single trial. This assumption is criticized 
later. 

The expected outcome, E(o), is simply the money value of each of the 
four possible presentation-response conditions weighted by their respective 
probabilities of occurring: 

= [P(Y 1s) - B A Y  I n)l Ro l l  - o12) + Pol2 + ( 1  - P)oZ2, (31) 

where 
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If the response probabilities depend upon a single bias parameter z ,  then 
to find that value of z that maximizes E(o) we set the derivative of E(o) 
with respect to z equal to 0 and solve for z: 

For the signal detectability model, we simply calculate the derivative of 
Eqs. 8 with respect to c and find that 

Thus, given the payoffs and presentation probabilities, we can calculate p 
and from this determine c via Eq. 34, provided that we know the forms of 
p(. I s )  and p(- I n). An exactly parallel development holds for the two- 
alternative forced-choice design, except that P equals the ratio of the 
difference density for (s,  n )  to the difference density for (n,  s ) .  

Equation 33 says that the slope of the isosensitivity curve should equal 
the optimum /3 defined in Eq. 32, so that one comparison we can make is 
between these two quantities, using, say, the theoretical signal detectability 
curve to estimate the slope. Green (1960) has done this, and the results are 
shown in Fig. 15. It is clear that the data depart considerably from the 

Fig. 15. Obtained versus optimum values of /I assuming a maximization of expected 
value and tlie detectability Yes-No model. Adapted with permission fiom Green (1960, 
p. 1195). 
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theory. Green argues that the insensitivity of the expected value to changes 
in the response probabilities probably accounts for the poor predictions. 
For example, with P = 0.5, a symmetric payoff matrix, and d' = 1, the 
expected payoff is within 90 per cent of the maximum as long as p(Y I n) 
is between 0.15 and 0.50. Nevertheless, the departure from the optimum 
> curve is systematic and needs to be explained. 

Note that the quantity p(c I s)/p(c I n) is the likelihood ratio of the 
stimulus density to the noise density; it is usually denoted by l(c). It is a 
measure of the relative likelihood that a given observation is due to s or 
to n, and the decision rule that maximizes expected value is to say Yes if 
the observation x is such that l(x) > > and to say No if 1(x) < >. Thus, if 
we had simply postulated a decision axis, we would have been forced by 
this bias theory to the position that it is the likelihood ratio axis. So, this 
biasing model is a possible defense for the original assumption that 
likelihood ratios are involved. 

A variety of other decision rules has been explored (Birdsall, 1955; 
Peterson, Birdsall, & Fox, 1954), all of which lead to the same general 
structure: the likelihood ratio is compared with some function of P and 
the oij. I shall not go into these here. 

The analysis for the choice theory is little different. Through Eq. 33 
no response theory is assumed. At that point we calculate the derivatives 
of the Yes-No choici model probabilities (Eq. 12) 

1 
P(Y I s) = - 

r and p(Y 1 n) = - 
1 + y b  r + b  

with respect to b, substitute in Eq. 33, and solve for b :  

The forced choice solution is the same, except that q is replaced by rd2.  
Similar, but more complex, calculations can be made for designs having 

three or more responses. Partial differentiation with respect to each of the 
bias parameters results in a set of simultaneous equations for these 
parameters, which may be very difficult to solve explicitly, but numerical 
solutions can always be obtained when needed. 

, In both models the optimum bias parameter depends continuously upon 
>, which in turn is a continuous function of P and the oij, except when 
P = 0 or when o,, = o,,. The same maximization analysis leads to quite 
different results when it is applied to the threshold model. Because the 
response probabilities depend linearly upon the bias parameter-t on the 
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lower limb and u on the upper-the maximum of E(o) occurs either a t  
t = 0 or 1 or a t  u = 0 or  1, depending upon the particular values of P 
and the 0's. In  terms of the isosensitivity curves, this means that the 
response data must fall a t  either (0, 0), (q(n), q(s)), or (1, I) ,  which is 
clearly not what happens in Figs. 8 and 9. Thus it is certain that the 
threshold model together with the maximization of expected money crite- 
rion is wrong, but which of the two is a t  fault is not certain. 

N o  very serious testing of the expected value model has been carried 
out within the detection context, but we know from preference and utility 
studies (see Edwards, 1954, 1961) that to  have any hope of predicting 
behavior we must convert it into a subjective expected utility model in 
which subjective presentation probabilities replace P and utilities of 
outcomes replace the oij. Whether or not this change results in an adequate 
bias theory for the detectability and choice models, it leaves unaffected the 
unacceptable results for the threshold model. So we must consider 
whether there is an  acceptable alternative for the threshold theory. 

5.2 Asymptotic Learning 

I t  is well known that when information feedback is used a period of 
pretraining must be included before the responses settle down to  their 
"asymptotic" values. Presumably, the subject is gaining some information 
relevant to  his responses and he is using it to  alter his behavior. One 
possibility is that he is discovering empirically, as it were, what the presenta- 
tion probability P and his own response probabilitiesp(Y I s) and p ( Y  1 n) 
are so that he can calculate an  optimum bias parameter from Eq. 33 or 
something analogous to  it. Another possibility, which some feel is a bit 
more likely, is that he is engaged in a learning process during which he 
alters his biases one way or the other, depending upon the trial-by-trial 
outcomes. This suggests that we set up a stochastic learning process of the 
sort discussed in Chapter 9 of Vol. 11, in which different operators are 
applied t o  the biases, depending upon the outcomes. Its asymptotic 
properties describe the subject when we, as psychophysicists, observe his 
beHavior. 

1 1  deciding on a given trial how t o  modify the bias-from the theorists' 
viewpoint, in deciding what learning operator to  use-three classes of 
events might be taken into account: the stimulus presented, which is 
revealed to  the subject by the information feedback, his internal observa- 
tion (if any) resulting from the presentation, and the response made. It 
seems clear that the operator applied should depend upon the presentation. 
One might also suspect that it should depend upon the response-in the 
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choice model this is the only other possibility. If so, then the probability 
of applying an operator depends upon the product of the presentation 
probability, which is constant during the experimental run, and the 
response probability, which is not. Because the probability that a par- 
ticular operator will be applied is changing over trials, the resulting 
stochastic process is exceedingly complicated. At present insufficient is 
known about its asymptotic properties for it to be of any use to us. This 
is, of course, a limitation in practice. not in principle. 

So we confine our attention to models in which the subject decides how 
to change his bias on the basis of the presentation and the internal observa- 
tion resulting from it. These models are called experimenter-controlled 
in learning theory. In many ways the internal observation seems a much 
more relevant event than the subject's response, for it is these observations 
that he must use in the future to decide what responses to make. By 
assumption, the conditional probability of an internal effect occurring is 
constant over trials, so the probability of applying a given learning operator 
is also constant, which eliminates the major difficulty mentioned above. 

With the signal detectability model, however, a problem still remains, 
namely that there is a continuum or  effects. Although Suppes (1959, 1960) 
has begun work on such learning models, insufficient is currently known 
about them to arrive at  a theory of biasing. The choice model does not 
suffer from this difticulty because there are no internal observations, nor 
does the threshold model because there are only two observation states, 
D and D. 

The choice theory learning model has already been presented in Sec. 1.2 
as an argument for assuming the choice theory. As far as the biases are 
concerned, we found that 

b(r) = P[4r)I W) ,  

where L is the identification function, P the presentation probability, and 
8 a learning rate parameter. Assuming that this learning model is correct, 
the major unsolved bias problem is how learning rates depend on the pay- 
offs and whatever else they depend on. 

A somewhat similar analysis can be given for the threshold model. 
Suppose, first, that the subject is operating upon the lower limb of the 
isosensitivity curve; that is, he is saying Yes only to a proportion t of the 
D observations and No, otherwise. He is adjusting t on the basis of his 
experiences. It is surely inappropriate for him to change it on those trials 
when a observation occurs. (Such an observation may, of course, 
influence his decision to shift from the lower to the upper limb.) SO 
suppose a D observation occurs. If it resulted from a n  s presentation, he 
should increase his tendency t to say Yes to D observations; whereas, if 
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it resulted from an n observation, he should decrease t. With this in mind 
and assuming linear operators, we postulate that 

ti + 1 - t ) ,  if s and D occur on trial i 
I 

ti+, = i ti - 8'ti, if n and D occur on trial i (36) I 
ti, if occurs on trial i, 

where ti is the bias on trial i. It follows that the expected value of ti+l 
given ti is 

Because all of the probabilities on the right are trial-independent, we can 
take expectations over ti: 

If we assume that the asymptotic expectation of ti, call it t,, exists, then 
by taking the limit of Eq. 37 as i goes to infinity we may solve for t,: 

t, = 46) 

4 s )  + 9(n)b ' 
where 

Note that, as in  the choice model, the bias parameters are the product of the 
presentation probability and the corresponding learning rate parameters. 

The parallel model for the upper limb assumes 

ui + 8(1 - u,), if s and b occur on trial i 

if n and b occur on trial i (40) 
if D occurs on trial i, 

and it results in the asymptotic expectation of u, 

The quantity b is formally similar to (Eq. 32) in that the presentation 
probability enters in the same way. Presumably, the learning-rate param- 
eters depend in some fashion upon the payoffs, but no one has yet 
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reported a theory for this dependence. Much research is needed to deter- 
mine whether this sort of model is adequate and to understand the relation 
between learning rates and payoffs. 

An interesting feature of these asymptotic results for the threshold model 
is that the response probabilities can approach the true detection proba- 
bilities only under very special conditions. If the subject is operating on 
the lower limb and b has a moderate value somewhere in the neighborhood 
of 1, then t ,  approaches I only as q(n) approaches 0. On the upper limb 
u, approaches 0 only as q(s) approaches 1. Thus, if, as in the data of 
Figs. 8 and 9, q(n) > 0 and q(s) < 1, the theory predicts that no data points 
lie in the immediate neighborhood of (q(n), q(s)), and none seems to. In 
other words, one effect of information feedback, according to this model, is 
to prevent the subject from revealing directly the true detection proba- 
bilities. It is not known what he does when there is no information feedback, 
but it certainly should not be assumed that p( Y I s) = q(s) and p(  Y I n) = 

q(n) without careful investigation. 
A second point of interest is that a t  asymptote the response probabilities 

are still fluctuating under the processes described by Eqs. 36 and 40. 
An expression can be derived for the variance of the response probability 
a t  asymptote which shows that the more rapid the learning, the larger the 
variance. Most experimenters feel that there is more than binomial 
variability in much psychophysical data, and learning may very well be one 
source. If so, considerable care must be exercised in applying the standard 
tests of significance that postulate constant underlying probabilities. 

A similar learning model can be developed for the biases z>  and w 
of the two-alternative forced-choice design (see Luce, 1963). Suffice it to 
say that v, = w, = 1/(1 + b). Note that, when b = 1, v, = w., = &, 
which implies p(l  I (s, n)) = p(2 I (n, s)). For P = +, b = I if and only 
if 8 = 8'. Thus the apparent tendency toward behavioral symmetry when 
P = + and the payoff matrix is symmetric suggests that the learning rates 
corresponding to symmetric payoffs are approximately equal. In that 
case b = (1 - P)/P. 

Assuming this, we may use Eqs. 38 and 41 to predict the data shown 
earlier in Fig. 8. The predicted values, which correspond to the points by 
pairs as one sweeps around the isosensitivity curve, are shown as crosses 
in Fig. 8 (p. 134). 

6. THEORIES  O F  T H E  STIMULUS PARAMETERS 

Relatively little is yet known about the way in which the stimulus 
parameters of the several theories depend upon physical measures of the 
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stimuli. The research is scattered and incomplete. Tanner and his 
colleagues have worked intensively on this problem for detectability 
theory during the last three or  four years, and considerable data have been 
collected, but in niy view no adequate theory has yet evolved. Some 
indication of their direction is given in Sec. 6.1. No work a t  all has yet 
been done in connection with the choice theory. The quanta1 studies of 
Bekesy (1930) and Stevens, Morgan, and Volkmann (1941) can, and 1 think 
should, be viewed as a stimulus-parameter theory for the threshold model 
when applied to situations in which the background and stimulus differ 
on only one physical dimension, such as energy or  frequency. Although 
I shall avoid the details, it is not difficult to  modify their model to give a 
threshold theory for the detection of a stimulus in noise. The neural 
quantum theory is examined in Secs. 6.2 and 6.3. 

6.1 Ideal Observers 

Peterson, Birdsall, and Fox (1954), in their presentation of detectability 
theory as a physical-not a psychophysical-theory, treated the question 
of the optimum detectability possible for physical signals in noise when one 
has different amounts of inforniation about the signals and noise. They 
were not concerned with what people d o  but with what an optimum detec- 
tion device can possibly do. The best known of the several sets of assunip- 
tions they looked into is the case of the so-called "signal-known-exactly." 
The signal and noise are both assumed to be limited to  some band of 
frequencies, and the noise is assumed to have equal power at  all of its 
frequencies and to  have normally distributed amplitudes (so-called white 
Gaussian noise). The ideal detector knows everything there is to  know 
about the signal: frequencies, phase relationships, amplitudes, time of 
onset, etc. Under these assumptions, they showed that the logarithm 
of the likelihood ratio is normally distributed with variance 2E/N,,, where 
E denotes the stimulus energy and No the noise power per unit bandwidth. 
When noise alone is presented, the mean is -E/No, and when stimulus 
plus noise is presented it is E/No. Thus we see that d '  = ( 2 ~ 1 ~ ~ ) ; ~ .  I t  was 
primarily this result that suggested the normality and equal variance 
assumptions typical of detectability theory. J shall not attempt to  repro- 
duce the argument leading to it. Peterson et al. explored a variety of other 
cases in which different assumptions are made about the information 
available to the detector. 

Given that results of this sort can be found, a possible approach to  the 
question of a stimulus-parameter theory is suggested. We suppose that 
the person is in fact an optimum detection device operating on certain of 
the information that he has available-an ideal observer. 
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Thus, if the human observer were to perform as an ideal observer the following 
would be necessary: (I)  he would have no source of internal noise. That is, the 
input signal would have to be transformed to a different type of energy by the 
end organ and transmitted by the nervous system, all with perfect fidelity. 
(2) He would have perfect memory for the signal parameters and the noise 
parameters. At any time t within the observation interval he must know the 
exact amplitude of the signal waveform. (3) He would be capable of calculating 
likelihood ratio or some monotonic transformation of likelihood ratio. 

These are some of the requirements which must be met by the human observer 
if he is to perform as well as the ideal observer. Clearly, the human observer 
does not meet these specifications. However, it is possible to determine experi- 
mentally the manner and degree to which the human observer fails to meet these 
requirements and thus obtain a better understanding of the human observer. 
(Tanner, Birdsall, & Clarke, 1960, pp. 19-20). 

As well as I can make out, Tanner proposes to search for assumptions 
about the information that is available to the ideal observer until he finds 
a set for which the optimum behavior predicted is that of the human being. 
Although much of this work is not yet published, or  published only in 
summary form (Tanner, 1960, 1961), it seems that two lines are being 
developed: modifications of the experiments to  fit the model and modifica- 
tions of the model to  fit the experiments. For example, the signal-known- 
exactly model postulates that the subject knows, among other things, the 
frequency and time of onset of the stimulus. The poorer performance of 
the subject may reflect a failure of these assumptions, and so by various 
experimental devices information about frequency and onset are presented 
to  the subject to  see whether the availability of this information improves 
his performance. The comparison measure used is the square of the ratio 
of the observed d '  to  that of the ideal observer detecting a signal that is 
completely known. This ratio is called the efficiency of the observer. 
Unfortunately, considerable good data are being reported only in terms 
of efficiencies and dl's, which, it is conceivable, may one day be of little 
more than historical interest. 

The other approach is to  change the information assunlptions about the 
ideal observer to  see whether an ideal observer with a less perfect memory 
more nearly approaches human behavior. Examples of this approach can 
be found in Green (1960), where the whole notion of the ideal observer is 
carefully described, and in Tanner (1961), who sun~marizes some of the 
memory aspects now believed to  be relevant. 

As the signal detectability theorists recognize, this program may 
eventually run afoul of difficulties that cannot easily be overcome within 
the framework of the ideal observer. In addition to introducing restric- 
tions upon the physical information that is usable, the subject may very 
well add his own noise and other distortions to the presented information, 
in which case it may be quite impossible to find an ideal observer that 
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performs as he does-assuming that ideal observers continue t o  be 
defined to  have properties such as those listed in the foregoing quotation. 
A somewhat cruder approach that nonetheless may merit attention involves 
parametric studies in which one or  a t  most two physical variables are 
manipulated and the model parameters are calculated from the data to  see 
what, if any, simple relations appear to exist. 

6.2 T h e  Neural  Quan tum Mode l  

Suppose that we have a simple background, such as a tone, and that a 
stimulus involves a short duration change of the background on one 
dimension, such as energy. The Btktsy-Stevens neural quantum model 
attempts to  relate the change in the number of neural quanta excited by 
the stimulus to  a physical measure of the increment (or decrement) intro- 
duced in the background. The model supposes that this physical dimen- 
sion can be partitioned a t  any instant into nonoverlapping intervals that 
correspond to the neural quanta. Thus two different levels of stimulation 
lying within one interval excite the same number of quanta, whereas two 
in different intervals excite different numbers of quanta. We may think of 
the subject as imposing a quantal grid over the physical dimension. 

Over time, the quantal grid is assumed to  fluctuate slowly as the result 
of changes internal to the subject, and so the number of quanta excited by 
a constant stimulus also fluctuates, sometimes increasing, a t  other times 
decreasing. Although it is generally felt that it is the grid that shifts, it is 
more convenient mathematically to view the grid as fixed and to suppose 
that the physical measure corresponding to the stimulus does the fluctuat- 
ing. The two ways of viewing the matter are completely equivalent as long 
as the grid is equally spaced, as we shall assume. In terms of a fixed grid, 
a given background will have some distribution, such as that shown in 
Fig. 16. 

Suppose that just prior to  presenting stimulus s, which, it will be recalled, 
is simply an increment (or decrement) in the background, the effect of the 
background is X. This effect is a random variable distributed in some 
manner, as shown in Fig. 16. The addition of s is assumed to  change the 
effect from X to X + A(s), where A(s) depends only upon s. Thus. 
whenever s is presented, the same increment is always added. This is an 
important point. We are saying that the effect of the background just 
before stimulation and the effect of the background plus the stimulus are 
perfectly correlated. This assumption is quite different from the inde- 
pendence assumptions we have repeatedly made when discussing the 
detection of stimuli in noise. The correlation assumption is interlocked 
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One quantum 
X 

Fig. 16. A typical density of assumed stimulus effects in the quantal model. 

with our earlier supposition that the grid fluctuates slowly-in order that 
a perfect correlation may exist, the stimulus presentation must be of 
sufficiently short duration so that little or no change in the grid location 
will take place during the presentation. In practice, a duration of the 
order of 100 ms has been deemed sufficiently short. 

It will be recalled (Sec. 1.3) that we set up the decision rule that a change 
in stimulation is noted when it equals or exceeds some number k of quanta. 
Thus, if the physical increment corresponding to s, A(s), is less than the 
physical increment corresponding to k - 1 quanta, it fails to produce a 
detection observation. If, however, it equals or exceeds that corresponding 
to k quanta, then it will always be detected. And when it is between that 
corresponding to k - 1 and k quantal intervals, a detection observation 
may or may not occur. To be specific, suppose that A(s) corresponds to 
+ of a quantum interval more than k - 1 quanta; then, if the random 
variable X overflows an integral number of intervals by less than $, the 
stimulus cannot excite the necessary k quanta. However, if it overflows 
+ or more, then s excites the required k quanta. So the probability that a 
presentation of s produces a detection observation depends upon the 
probability that the background residue, as it is called, is greater than 3. 

It follows, then, that the probability of a detection observation occurring 
depends upon the distribution of residues. To talk about this distribution 
without specifying just how many quanta are excited by the background, 
as we have been doing, makes sense only if the physical measure we are 
using has the property that all quantal intervals are of the same size. It is 
not obvious that the usual physical measures have this property, but under 
very general conditions it is possible to find a continuous monotonic 
transformation that has. We assume that this is the measure we are using. 
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Increment in quantal units 

Fig. 17. Predicted true probability ofdetection versus a measure ofthe stimulus increment 
in quantal units (i.e., the true psychon~etric function) assuming the quantal model, a 
uniform distribution of residues, and a two-quantum criterion. 

Now, if the distribution of residues is uniform in that measure, as has 
generally been assumed in discussions of neural quantum theory, then the 
probability of detection is easily seen to be rectilinear, as in Fig. 17. 

Stevens, Morgan, and Volkmann (1941) attempted to argue verbally, 
and Corso (1956) alleged that it follows from Bayes's theorem, that the 
distribution of residues is uniform independent of the distribution of X. 
This is false. For example, suppose that X is distributed according to 

and that the quantal boundaries are located at the points iq, where i = 0, 
f 1, f 2, . . . , and q > 0 is the size of one quantum. If R denotes the 
residue random variable, then its distribution for 0 < r < q is given by 
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and elsewhere it is zero. It is simple to show that the nonzero portion of 
this function has a minimum at  r = q / 2 ;  hence, to  get an  idea of the 
departure from uniformity, we look a t  the ratio 

Thus, if e-" = $, the ratio is 5/4. It is clear that as the distribution of X 
becomes flat relative to  the quantum size, that is, as Iq  approaches 0, the 
more nearly the distribution of the residues approaches the uniform. 

In general, however, this distribution is not uniform, and, to  the extent 
that it deviates from uniformity, the transition from 0 to  1 in Fig. 17 must 
deviate from linearity. This point is important because much of the 
controversy in the literature over the quantal hypothesis has centered on 
the prediction of linearity and whether or  not appropriate statistical tests 
have been performed to  decide between it and an ogive. I n  my view, the 
theory as presently stated does not really make this prediction. I have 
already given one reason, another will be given now, and a third is presented 
in the next section. 

Suppose that x denotes the physical value of a stimulus in a measure 
for which the quantal increments are equal and suppose that the distribu- 
tion of residues is uniform in that measure. Thus a plot of the detection 
probability versus stimulus increments in this measure is rectilinear. 
Because we d o  not know what measure this is, we use instead some 
"natural" physical measure for which that value corresponding to  x is y, 
the functional relation being f ( x )  = y. In general, we must expect f  to 
be nonlinear, and so the straight line plot is somewhat warped when the 
natural physical measure is used; however, because the estimated size 
of the neural quantum is small, this effect is hardly noticeable for moder- 
ately nonlinear functions such as the logarithm. 

But if not the straight line prediction, what then is there to  test? The 
only other prediction as far as I can see is that the p = 1 and p = 0 inter- 
cepts stand in the ratio k : ( k  - l) ,  where k is an integer. This result is 
independent of the distribution of the residues, but, of course, it is not 
independent of the independent variable that we use. Fortunately, if the 
transformation f  is moderate in the sense that its derivative is nearly 
constant over a k  quantum interval, then it does not matter much whether 
we use x or y. T o  show this, we use the well-known mean-value theorem, 
namely that iff is differentiable then there exists an x* such that 

where x ,  is the background level and x, < x* < x. Thus, if x, denotes the 
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p = 0 intercept and x,, the p = 1 intercept, we have 

Hence, iff '(x,*)/f'(x,*) is approximately 1,  which we expect because the 
quantal iticrenients are thought to be small, the integral relation between 
the two intercepts is little changed. 

6.3 T h e  Neural  Q u a n t u m  Experiment 

The neural quantum hypothesis and the experimental studies under- 
taken to test it have generated considerable controversy, much of which 
is described by Corso (1956). As has been indicated, a good deal of it has 
centered on the linearity hypothesis, but this is not really a n  essential 
feature of the theory. Much of the rest centers on  the design of the so- 
called quantal experiment. 

The proponents of the theory have emphasized how easy it is not to  
confirni the theory, and anyone who has tried is only too aware of the 
difficulties. Anything in the experimental design that makes the contri- 
bution of the stimulus, A(s), a randoni variable, so that X and X + A(s) 
are not perfectly correlated, generates ogival detection functions that have 
no simple integral relation between intercepts. (It is easy to  see this. The 
model is substantially the same as the detectability one with two 
independent random variables, the difference being that a response occurs 
only if the observations differ by some fixed amount corresponding to k 
quanta.) Apparently, any sort of distraction is likely to uncorrelate the 
presentations, and thus quantal results often are not found. This sort of 
vague notion of an acceptable experiment unfortunately makes the theory 
nearly immune to rejection. Any failure of the data to confirm it is likely 
to be taken as prima facie evidence that something was wrong with the 
experiment. 

The feature of the "standard" quantal design that has received most 
criticism is the fact that the subject knows the presentation schedule. In 
order that the subject get properly "set," he is permitted to  listen to 
repetitions of the same stimulus increment until he says he is ready, and 
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then a run of identical increments is presented. The subject responds to 
each of these. Thus he knows in advance that Yes is the correct answer on 
every trial. The possibility for biasing seems great. 

One school has argued as follows. Suppose that the true detection 
function is a smooth ogive. For a stimulus with a high detection proba- 
bility, say 0.9, there is a tendency for the number of Yes responses to be 
inflated artificially because of two factors. One is that the subject knows 
that Yes is the correct response, and the other is that he is assumed to have 
a tendency to perseverate his responses, most of which have been Yes. 
This means, then, that the data function must be above the true function, 
and it intercepts thep  = 1 line in much the same way as a linear function 
does. For a stimulus with a low true-detection probability, say 0.1, the 
argument is less clear because the perseveration tendency decreases the 
number of Yes's, whereas his knowledge of the presentation schedule 
tends to increase the number. So, according to this argument, we may 
expect the upper intercept to confirm the neural quantum model, but the 
lower one should vary from subject to subject and, on the whole, be more 
rounded. Although it is difficult to prove formally, inspection of the 
published as well as of considerable unpublished data suggests that just 
the opposite is true: the lower intercept seems more stable and more in 
line with the quantal model than the upper one. 

Assuming that the rectilinear quantal model correctly describes the 
dependence of the true detection probability upon the stimulus magnitude, 
the learning model of Sec. 5.2 suggests that the observed responses should 
distort this function, especially at the upper intercept when there are no 
or only a few catch trials (Luce, 1963). Specifically, let us assume that a 
detection observation occurs when and only when a two-quanta change 
occurs, as suggested by the data. In addition, however, let us suppose that 
a conservative lower-limb bias is used by the subject when the detection 
observation is based upon a change of only two neural quanta, whereas 
with three or more he uses an upper-limb bias. Thus, for any stimulus of 
magnitude less than two quantal units, a lower-limb bias is in force, and so, 
by Eqs. 15 and 38, 

P(Y I s) = t ,  q(s) 

For stimuli two quantal units or larger, q(s) = 1. For such stimuli, the 
foregoing equation yieldsp(Y I s) = 1/[1 + q(n)b] for the lowerlimb and, 
by Eq. 16, p(Y I s) = 1 for the upper limb. The probability that a lower- 
limb bias is used decreases from 1 to 0 linearly as the stimulus magnitude 
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increases from two to three quantal units. In  summary, then, if s denotes 
the stimulus magnitude in quantal units, the response function is 

I 0, i f O < s < l  

Quanta1 units 

Fig. 18. Predicted observed probability of detection versus a measure of the stimulus 
increment in quantal units assuming a true underlying rectilinear function and the 
response biasing model described in the text. The  parameter q ( n )  is the true false alarm 
rate and b is a quantity that depends on the frequency of "catch" trials and the learning 
rates of the subject. 
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Size of AF (cycles) 

Fig. 19. Quanta1 data for the detection of frequency incremrnts by one subject at  four 
levels of sound inrensity. Each data point is based on 100 observations. T h e  theo- 
retical curves were drawn subject to the condition that the intercepts stand in the 
relation of 2 to I. Adapted with permiasion from Stevens. Morgan, and Volkmann (191-1, 
p. 327). 

see that for small values of q(n)b, which, for example, corresponds to a 
small proportion of catch trials, the only effect is a slight distortion of the 
true quanta1 function near the upper intercept. As q(n)b becomes larger, we 
obtain a function that is approximately a straight line with 3 :  1 intercepts, 
and as q(n)b becomes still larger the function approaches a 3 :  2 line. 

In spite of all the arguments why the observed functions should not be 
rectilinear, the surprising thing is how linear they are. In Fig. 19 are 
data for one subject detecting frequency increments at different levels of 
intensity. The theoretical lines have 2: 1 intercepts. Similar data for the 
detection of intensity differences of a pure tone for two subjects are shown 
in Fig. 20. Again 2: 1 lines are shown. 

In my opinion, the main challenge of these results for those who do 
not believe that thresholds exist is to explain, using a continuous theory, 
why the apparent intercepts should exhibit a 2: 1 ratio. This has yet to be 
done. 
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100 

(Bekesy's data) 

50 

0 0 0.02 0.04 0.06 0.08 0 l&LLI 0.05 0.10 0.15 0.20 

Relative size of increments (~111) 
(e)  (f) 

Fig. 20. Quantal data for the detection of intensity increments of a 1000-cps tone by one 
subject at  five levels o f  sound intensity and in plot f Bekesy's intensity data for both 
increments and decrements. Each data point is based on 50 to 100 observations. The  

theoretical curves werc drawn subject to the condition that the intercepts stand in the 
relation of 2 to 1. Adapted with pcrmission from Stevens, Morgan, and Volkmann (1941, 
p. 323). 

7. PURE RECOGNITION 

7.1 Introduction 

As mentioned at the beginning of this chapter, a recognition experiment 
is a complete identification design in which the presentation set has at  least 
two stimuli in addition to the null one. We make the further distinction 
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that it is a pure recognition experinlent when 8 $ S, and that it is a siniul- 
taneous detection and recognition experiment when 8 E S.  

Given a set of stimuli, it is the experimenter's decision whether to perform 
a pure recognition or a simultaneous detection and recognition study. T o  
be sure, he would be considered foolish to  use a simultaneous detection 
and recognition design with perfectly detectable stimuli, but it has not 
been uncommon to use pure recognition designs when the stimuli are 
difficult to detect. In such experiments there are bound to be trials when 
the subject would prefer, if permitted, to say that no stimulus was 
presented. That not being allowed, what happens? Broadly speaking, 
there are two possibilities. Either the subject has some information about 
the stimulus which he then uses when forced to recognize, in which event 
he is more often correct than not, even though he does not believe a stimulus 
was presented; or he does not have any information a t  all, and so he can 
only choose arbitrarily, possibly with a bias, among the recognition 
responses. If the first possibility is correct, then the pure recognition 
experiment may well tell us directly about his ability to  recognize the 
stimuli, but if the second is correct, these simple experiments cannot 
produce simple data. The response frequencies are a compound of his 
ability to recognize when he has detected and of his arbitrary assignment 
of undetected presentations to the recognition responses. 

The necessary data to decide this point are included in Shipley's (1961) 
thesis. On each trial stimulus s,  stimulus s', or noise ti was presented, and 
the subjects were required both to detect, Y o r  N, and, no matter what the 
detection response, to recognize s or s'. The stimuli were tones differing 
both in frequency and intensity. (Because it is conceivable that there is 
an interaction between the detection and forced-recognition responses, 
the same experiment was run except that the subjects were not required to 
recognize when they failed to detect. No  interaction was found.) We 
look to see whether the recognition of "No stimulus" responses depends 
upon the stimulus presentation. The conditional percentages of s responses 
when no detection is reported and, for comparison, when detection is 
reported are shown in Table 7 for each of the three presentations. Also 
shown are the comparable data for recognition in the two-alternative 
forced-choice design. Apparently these three subjects were unable differ- 
entially to recognize the stimuli when they failed to  detect them. There 
are strong biases, but there is no correlation with the stimulus presented 
(except possibly a slight negative one for subject 3 in the Yes-No design). 

It is important before proceeding further to assess the significance of 
these data. Above all, they suggest that a recognition experiment involving 
barely detectable stimuli should not employ a forced-choice design. Two 
such studies performed in different laboratories with slightly different levels 
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Table 7 Percentage of Detected and  of Undetected Responses 
Recognized as Stimulus s (Shipley, 1961) 

Stimulus Subject 

Presentation 
1 2 3 

Detected Undetected Detected Undetected Detected Undetected 

Yes-No Design 

Subject 
Stimulus 

Presentation 
1 2 3 

Correct lncorrect Correct Incorrect Correct Incorrect 
Detection Detection Detection Detection Detection Detection 

Forced-Choice Design 

of detectability could easily lead to apparent differences in recognition, 
even when none existed. The relative stability, both experimentally and 
theoretically, of the forced-choice as against the three-response category 
scheme in discrimination studies (see Chapter 4, Sec. 5.2) must not be 
interpreted as a blanket recommendation for forced-choice designs in 
other types of experiments. 

These data raise again the question of a threshold, for, when symmetric 
payoffs are used, the "no stimulus" response contains no residual informa- 
tion about the identity of the presented stimulus. This is certainly con- 
sistent with the notion of a detection threshold. It does not, however, 
prove that one exists. Another interpretation is that all information about 
the presentation is lost once the subject decides that no stimulus was 
presented. It should be possible to decide between these two hypotheses 
by running a simultaneous detection and recognition experiment with 
various asymmetric payoff matrices. If there is a threshold, the recognition 
of detected stimuli will be degraded in a predictable fashion as the detection 
frequency is increased by changing the payoffs; whereas, if we are 
witnessing a decision phenomenon, the recognition of detected stimuli will 
be independent of the frequency of detection responses. This study has not 
been performed. 
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Having made clear that the two types of recognition experiments must 
be treated separately, the remainder of this section is devoted to pure 
recognition studies. 

7.2 Information Theory Analysis 

Aside from traditional statistics of contingency tables, the main mathe- 
matical tool that has come to be used to study pure recognition with more 
than two or three stimulus presentations is information theory. I t  is 
impossible to devote the space needed for a complete review of Shannon's 
theory (Shannon & Weaver, 1949) or  even of its varied uses in psycho- 
physics, but fortunately several suitable summaries with extensive 
bibliographies already exist (Attneave, 1959; Luce, 1960; Miller, 1953, 
1956). 

Except for the words used, the description of a communication system 
assumed by the information theorists is identical to our complete 
identification design. They interpret S as the set of elementary signals that 
can be transmitted by the system, R as the set of signals that can be 
received, and i as a given one-to-one correspondence between them. Thus 
S might be the ordinary alphabet, R the sequences of dots and dashes 
used in the Morse code, and i the code relating them. A probability 
distribution p over S x R is assumed to exist-p(s, r) is interpreted as the 
joint probability that signal s is transmitted and r is received. If we define 

and 

then P(s) is the probability that signal s is transmitted, p(r) the uncondi- 
tional probability that r is received, andp(r  I s) the conditional probability 
that r is received when s is transmitted. I n  a complete identification experi- 
ment, P(s) is the probability that s is presented, p(r), the unconditional 
probability of response r, and p(r  I s), the conditional probability of 
response r given stiniulus s. In  the communication terminology the matrix 
of conditional probabilitiesp(r 1 s) is called a noise matri.~, for by definition 
that which prevents communication from being perfect is noise; in a 
complete identification experiment it is called a confusion matrix. 
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Information theorists undertook to state by means of a single summary 
number the average information-transmitting characteristics of such a 
system. I t  was to  be a measure that would satisfy certain a priori criteria 
and permit one to  capture in precise theorems certain known empirical 
results concerning channel capacity, information transmission, and error 
correction. The major a priori requirement imposed by Shannon was this. 
Suppose that several signals are, in the statistical sense, independently 
selected and transmitted ; then the average amount of information created 
by their joint selection shall be the sum of the average amounts of informa- 
tion created by their separate selections, that is, average information is 
postulated to  be additive when the selections are independent. He showed 
that this coupled with other much weaker conditions implies that the 
measure must be of the form 

H(S) = -1 P(s) log P(s). 
SES 

Usually, the base of the logarithm is chosen to be 2, thereby setting the 
unit of measure. Following a suggestion by J. Tukey, this unit is called 
a bit. A choice between two equally likely alternatives creates one bit; 
among 4, two bits; among 8, three bits; etc. 

Two features of this measure should be noted. First, it is nonnegative 
and has the value 0 when and only when one of the probabilities is 1 (and 
so all the rest are 0). That is to say, no information is generated by the 
selection of an  alternative that is certain to be selected; this agrees, for 
example, with the view that little or  no information is transmitted by the 
conventional replies to  conventional greetings. Second, the measure has 
its maximum value when all of the probabilities are equal; if there are 
k alternatives, the maximum is log2 k. 

In like manner, we have as the information measure of the responses 

and, as the conditional measure of the response given the stimulus, 

H(R I S)  = Z: 2 p(s, r) log2 p(r I s). 
SES r t R  

The quantity 

is called the information transmitled from the stimulus to the response. I t  
not only plays a significant role in information theory itself, but it has 
proved to  be a useful measure in psychology. I t  is not difficult to  show that 
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0 < T(S; R) < H(S); that T is 0 when and only when the responses are 
statistically independent of the stimuli, that is, when p(r I s) = p(r); and 
that it is equal to H(S), its maximum, when there is no confusion, that is, 
when p[r I i(r)] = 1 for all r E R. Thus T is an inverse measure of how 
much degrading, on the average, is introduced by the subject. 

The principal empirical results stemming from information analyses 
of recognition experiments are described in an excellent survey article by 
Miller (1956), so we need only summarize them very briefly here. Suppose 
that we select k stimuli on some unidimensional continuum, such as 
sound energy, so that they cover most of the sensible range and are more 
or less equally spaced; then T(S; R) is approximately equal to H(S) 
(which equals log, k when the stimuli are equally likely) in the range from 
0 to roughly 2 bits. For H(S) greater than 2 bits, the rate of increase of the 
transmitted information diminishes sharply, reaching a peak between 1.6 
and 3.9 bits, depending upon the continuum. Increasing H(S) beyond that 
point may in fact cause T(S; R) to decrease. Moreover, for pitch a t  least, 
Pollack (1952) has shown that the range of frequencies can be varied by a 
factor of at least 20 with relatively little effect on the maximum amount 
of information transmitted by a fixed number of equally spaced stimuli. 

If the stimuli are multidimensional, the maximum value of T can be 
increased considerably from what it is for any one of their dimensions, 
but the maximum is always less than the sum of the values of the separate 
component dimensions. Nonetheless, more seems to be gained by adding 
another dimension than by refining the categories per dimension. (See 
Beebe-Center, Rogers, & O'Connel, 1955; Halsey & Chapanis, 1954; 
Klemmer & Frick, 1953; Pollack, 1953; Pollack & Ficks, 1954). 

The regularity and generality of these results is impressive, and much 
has been made of the relatively small values of transmitted information. 
On the one hand, it is well to know such facts when designing certain types 
of systems in which men must interact with information generating o r  
receiving machines, and, on the other hand, they stand as summary 
statements in need of detailed scientific explanation and, thereby, refined 
restatement. Some writers have, 1 believe, taken the view that the 
behavioral regularities expressed in terms of the information measures 
themselves constitute a theory, but I am inclined to class them simply as 
empirical generalizations requiring theoretical analysis. It is often not 
easy to know when a particular relation stemming from experiments 
should be considered a generalization in need of explanation and when it 
should be introduced as an unanalyzed assumption of a theoretical 
system, but two features of these relations lead me to class them as 
generalizations. First, they are not really simple, certainly not in the sense 
that linearity, additivity, and independence assumptions are simple. 
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Second, they are statements about averages-not just averages of data, 
which are often used as estimates of probabilities, but averages over 
distinct classes of responses-and so the observed regularities are bound 
to mask much of the possibly interesting fine detail of the behavior. 

McGill (1954, 1955a,b) and Garner and McGill (1956) extended the 
decomposition of transmitted information (Eq. 45) to more complex 
stimulus presentations. McGill's idea was, roughly, to ascertain how much 
each of the various possible determiners of the response, such as previous 
responses and stimulus presentations, contribute to the total information 
transmitted. He devised an additive decomposition in terms of the 
contributions of each variable and the various possible interactions 
among them. This constitutes an information theoretic, and hence non- 
parametric, analogue of the analysis of variance, and as such it is a useful 
device in the study of sequential dependencies among the responses and 
in discovering which events are determiners of the responses. For a 
summary of the ideas and applications, see Luce (1960). 

7.3 A Choice Analysis of the Results of 
Information Theory 

Little has been published attempting to account for the information 
theory findings in terms of the three response theories we have been 
considering. To show that work of this sort is possible, a choice theory 
analysis is given here. Also, see Luce (1959). 

Consider stimuli that differ on only one physical dimension, such as 
energy. In terms of the distance measure (Eq. 6) introduced in Sec. 1.2, it 
is plausible that distance is simply additive for such stimuli. In terms of the 
q-scale, this amounts to assuming that 

when s, s' and s" differ on one physical dimension and s < s' < 3". 
Let us suppose further that we choose k stimuli that are ordered 
sl < s, < . . . < s, and spaced on that dimension so that successive pairs 
are equally recognizable in the sense that 

q(s,, si+J = q, for i = 1, 2, . . . , k - 1. 

Performing a simple induction on Eqs. 46 and 47, it is easy to see that 
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Thus the confusion matrix of scale values is of the form 

Responsc 

where the bias parameters are omitted. 
The first thing to note is that the  model has the often observcd U-shapc 

when the probabilities p(r I s,) are plotted against r. In  Table 8 the pre- 
dicted probabilities for the end and middle stimuli are presented for 
several small k's and for several plausible values of q. The dip is evident. 
Of course, the bias parameters affect the exact form of this U-shaped 
function. 

s, 
Stimulus 
Presentation 

Table  8 Comparison of the Theoretical Probability 
of Correct Identification for Encl and  Miclclle Stimuli 

7' T j  1 . . . 7L-3 
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Next we look into the question of transmitted information. By what we 
have assumed for our stimuli, we know that the matrix of scale values for 
the k = 2 recognition design is 

Si S i t 1  

again omitting biases. Assuming the independence condition, Assumption 
4 on p. 1 14, the parallel forced-choice design has the matrix of scale values 

1 2  

1 v'i 1 J. 
(sit19 ~ i )  17 

In the light of our discussion of the quanta1 model, it is not clear whether 
the independence assumption is justified, but in order to continue the 
discussion we accept it. In discrimination work (see Chapter 4, Sec. 1.2) 
two stimuli are said to be one jnd (one just noticeable difference) apart if 
p(l  I (sit sit,)) = 9 ,  in which case the forced-choice model yields 

For stimuli that are m-jnds apart in the sense that m - 1 stimuli can be 
found between them such that successive ones are one jnd apart, Eq. 46 
implies 

17 = (4)"' b'i. (49) 

For our calculations, let us consider k stimuli so spaced that successive 
ones are m jnds apart;  thus the total range of stimuli is (k - I)m jnds. 
Specifically, let us fix the range at 26 = 64 jnds and let k = 5,9, 17, and 33 
stimuli, which means that successive ones are separated by m = 16, 8, 4, 
and 2 jnds, respectively. For each k the confusion matrix of probabilities 
can be determined from the scale values given in Eq. 48, using Eq. 49 to 
determine q. Assuming that the stimuli are equally likely, the information 
transmitted is calculated using the formulas in Sec. 7.2. The results are 
shown in the last column of Table 9. Up to something just over three bits 
presented, the information transmitted is nearly equal to the stimulus 
information. Increasing the stimulus information further, the transmitted 
information increases less rapidly, reaching a maximum of about 3.6 bits. 
Not only does this correspond qualitatively to the data, but it is in about 
the right range of values. The data, however, appear to have arisen from 
a somewhat broader range of stimulus values and to have resulted in 
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Table 9 Choice Theory Predictions of Information Transmitted 
versus Information Presented 

Bits Transmitted for 
Number of Stimulus Range in jnds 

Equally Likely Bits 
Alternatives Presented 16 64 

somewhat smaller maxima, which suggests that we are using too small 
a value for q. It is obvious that we could select a value of q that would 
yield quantitatively the same summary results as the data; it is a much 
more subtle question whether this model can reproduce the whole confusion 
matrix in detail, and that has not been thoroughly investigated. 

A second major information result is that the increase in information 
transmitted is relatively slight as the range is increased (Pollack, 1952). 
Two ranges, differing by a factor of four, are shown in columns 3 and 4 of 
Table 9. A considerable difference in the maximum exists, strongly 
suggesting that the present model is inadequate to explain these results. 

A third information theory result concerns the less than additive increase 
of the transmitted information as the number of dimensions per stimulus is 
increased. We consider the simplest possible case of two perfectly detectable 
stimuli differing on two equally recognizable dimensions. Suppose s and 
s' are the stimulus values on one dimension and t and t' on the other and 
that their confusion matrices of scale values are 

Response Response 

S st t t' 

Stimulus 

Presentation s' 

For the choice model with Assumption 4, the scale values for the composite 
stimuli are 

(s, t )  (st, t ' )  
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The ratio of the information transmitted in the composite case to that in 
the unidimensional case, assuming equally likely stimulus presentations, 
is shown in Table 10 for three values of 7 .  The ratio is always less than 2 ,  
and it approaches 1 as the stimuli become more recognizable. 

Table 10 Predicted Ratio of Information Transmitted for Two- 
Alternative Two-Dimensional Case to Two-Alternative One- 
Dimensional Case 

rl 0.50 0.25 0.10 

ratio 1.90 1.66 1.38 

Although there are some tentative indications that the recognition 
choice model may account for the information theory results, the only 
really satisfactory test is whether it accounts for the whole confusion 
matrix. Assuming that the stimuli are physically ordered and that i is 
the correct response for stimulus presentation si, we have the matrix of 
scale values 

1 2 . . .  k 

Assuming that Eq. 46 holds, then for i < j, 

and, recalling that q(i, j )  = ~ ( j ,  i )  and that ~ ( i ,  i )  = 1, it follows that there 
are only k - 1 independent stimulus parameters, the ~ ( i ,  i + I), and 
k - 1 bias parameters, the b(i), to be estimated. 

In practice, we can only be certain that the conditional probabilities on 
and near the main diagonal are appreciably larger than zero, and so any 
estimation scheme had better rely heavily upon these entries. One 
possibility-one that has no known statistical properties but that uses 



1 7 ~  DETECTION A N D  R h C O G N l T I O N  

entries only from the main diagonal and adjacent cells-is 

- - ~ ( i  + 1 ( i )  -- p(i I i + 1) - 
p(i I i) p(i + 1 1 i + 1 )  

and 

b(i + 1) q(i, i + 1)bii + [TI ' = [ b(i) i, i + 1)bii) 

Predrcted proport~on 

Fig. 21. Observed proportion versus proportions predicted by the choice model for 
McGuire's (Shepard, 1958b) size recognition data. The estimatio~l scheme and the 
collapsing of the data are described in the text. 
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We apply this estimation scheme to McGuire's data on size recognition 
(reported in Shepard, 1958b), although they are not ideal because ten 
subjects are averaged together. Each subject responded to 80 presentations 
of each of nine circular areas. A x2 comparison of the predicted and 
observed proportions yields a value of 96.3 which with 8 x 9 - 16 = 56 
degrees of freedom is highly significant. This is none too surprising 
because the estimation scheme completely ignores the small entries in the 
table, which, of course, contribute heavily to  x2. That the estimates are 
probably nonoptimal is indicated, for example, by the fact that about half 
the total contribution to x%ornes from the first column. In the light of the 
failings of the estimation procedure, a more reasonable test of the model 
is to lump together all entries to the left of cell i - 1 in row i and all of 
those to the right of the i + 1 entry. This reduces x2 to  15.6 and the 
degrees of freedom to 14, yielding 0.2 < p < 0.5. The observed versus 
predicted proportions for this collapsing are shown in Fig. 21. These 
results suggest that a better estimation method might very well result in a 
nonsignificant over-all X 2 .  

8. S I M U L T A N E O U S  D E T E C T I O N  A N D  
R E C O G N I T I O N  

Even restricting our attention to the simplest simultaneous detection 
and recognition designs, namely S =Y = {s, s', 81, we find that relatively 
little work has been reported. Because the ideas are adaptations of those 
we have already discussed, it will suffice simply to outline them. 

8.1 Signal Detectability Analysis 

Following the general structure of the signal detectability model, there 
is a decision axis relating stimulus s to stimulus s', another relating s to 
noise, and a third relating s' to noise. Tanner (1956) assumed that they can 
be represented in the plane, as in Fig. 22. The three intersections are 
supposed to occur at the means of the distributions projected on the 
several axes. The noise and each of the stimulus-plus-noise distributions 
are assumed to be independent and normal, all with equal variance. The 
two detection axes are separated by some angle 0,  not necessarily 90". 

Tanner (1956) used this structure to analyze the pure recognition 
experiment Y = {s, st). I did not present this in the last section because no 
testable conclusions seem to derive from it. Swets and Birdsall (1956) dis- 
cussed the simultaneous detection and recognition experiment, proposing 
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Fig. 23. A decision rule proposed by Swets and Birdsall (1956) Tor the two-stimulus 
simultaneous detection and recognition experiment. 

the decision rule shown in Fig. 23. The three straight lines meet at a point 
in the triangle formed by connecting the means of the three distributions; 
each line is orthogonal to a side of the triangle. 

8.2 Choice Analysis 

The choice model analysis follows immediately from Eq. 5 and As- 
sumptions 1 to 3:  

Y Y N 

where q = q(s, n), q' = q(sl, ,I), and 1 = q(s, s'). 
The adequacy of the choice model for this simultaneous identification 

design can be tested, using Shipley's (1961) data. The parameters q and q' 
are estimated as the mean of those obtained from the simple Yes-No and 
two-alternative forced-choice experiments (Table 2). The remaining 
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Fig. 2+. Observed proporrions versus those predicled by [he choice lnudcl fur a lwu- 
stimulus simultaneous detection and recognition design. 'l'he data are from Shipley 
(1961). The parameter values uscd wcrc 

Subject 7 7' 1 b c 

three parameters are estimated from the data in question by 
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which follow immediately from Eq. 50. This leaves three degrees of 
freedom. The observed versus predicted proportions are shown in Fig. 24. 
Although the prediction is really quite good, the errors appear to  be not 
entirely random: the predicted values are consistently less than the 
observed for the larger probabilities and consistently more for the middle 
values. Whether better estimates would eliminate this deviation is not 
known. 

9. D E T E C T I O N  O F  A N  U N K N O W N  S T I M U L U S  

A simple Yes-No detection experiment in which the stimulus presenta- 
tion can be one of two or more different stimuli is said to involve the 
detection of an unknown stimulus. It is, of course, a partial identification 
experiment-the first to  be examined in this chapter. For simplicity we 
restrict our attention to the case in which the unknown stimulus is one of 
two possibilities, s or sf. The existing data (Creelman, 1959; Green, 1958; 
Swets, Shipley, McKey, & Green, 1959; Tanner, Swets: & Green, 1956; 
Veniar, 1958a,b,c) indicate that the detectability of an unknown stimulus 
is less than that of either stimulus singly and that the decrement is an 
increasing function of the recognizability of the stimuli. Why? 

One theory, suitable for pure tones, assumes that a subject can listen at 
any instant to only a narrow band of frequencies and that, when the signal 
is unknown, he must continually shift from filter to filter (Tanner, Swets, & 
Green, 1956). Because he sometimes listens through the wrong filter, the 
probability of detecting an unknown stimulus must be less than that for a 
known one. 

A second acoustic theory, proposed by Green (1958), assumes that the 
subject can listen through as many filters as needed, each being centered on 
a different frequency. The effect of increasing the number of frequencies is 
to increase the total amount of noise heard without affecting the detec- 
tability of the stimulus in asingle band. This produces an over-all reduction 
in the detectability. The theory states precisely how the detectability 
reduces with the number of unknown frequencies, the band width of the 
filter being a parameter in the model. 

Detailed statements of these theories and some relevant acoustic data 
are given in Swets, Shipley, McKey, & Green (1959); on the whole, the 
scanning model comes off better than the multiband model. Veniar 
(1958a,b,c) suggests that neither is completely adequate. Whichever may 
be better for pure tones, neither is readily generalizable to other classes of 
stimuli for which, presumably, the same decrease in detectability occurs. 
Possibly each stimulus modality requires its own explanation, but, in the 
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absence of any compelling data or arguments, one hopes that the phe- 
nomenon is of a more general response character and that it requires 
fewer specific assumptions than those made in the filter theories. 

Shipley (1960) suggested such an idea, one that is applicable to  any 
response model. She supposed that the subject is covertly recognizing the 
stimuli as well as overtly detecting them, even though he makes no 
recognition response. If so, and if we assume the choice model, the 
matrix of scale values is simply Eq. 50 with the two detection responses 
combined. 

T o  show that this predicts results qualitatively similar to  those observed, 
consider the special case in which the stimuli are equally detectable and 
there is no recognition bias, that is, 7 = 7' and h = 1. Then we can 
combine the two stimulus presentations into one because the two rows are 
the same: 

Response 

Stimulus 
Presentation n 

This is equivalent, in the sense of generating the same probabilities, to  a 
matrix of scale values of the form 

Y N 

S O ' "  [) y ]  
n , 

where 

This is the form of the simple Yes-No matrix discussed in Sec. 2.2, and 
so 5 is an apparent detection parameter and 

is an apparent bias parameter. 
The probability of detecting an unknown stimulus is smaller than that 

of a known stimulus if and only if 5 > 7, and that in turn holds if and only 
if 1 < 1, as it must be for distinct stimuli. Moreover, as the stimuli 
become more recognizable, that is, as ;I gets smaller, 5 gets larger and so 
detectability becomes poorer, as has been observed. 

A parallel development exists for the forced-choice design. Omitting 
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the biases, the simultaneous detection-recognition matrix of scale values 
is seen to be 

Responses 

Stimulus 
Presentation 

where d is given by 

(log = (log + (log q'j2 

and the other symbols have their previous meanings. T o  see what happens 
qualitatively, again suppose q = q' and that the biases all equal 1 ; then 
we can collapse on both rows and columns: 

(S or  sf ,  n j  

(n, s o r  s'j 

The standard form for the unbiased forced-choice matrix of scale values 
is 

1 2  

so the effective stimulus parameter is 

AS for the Yes-No design, there is a n  increasing reduction in detectability 
as the stimuli are made more identifiable, that is, as A is made smaller. 
We observe that the apparent loss in detectability is greater in the forced- 
choice than in the Yes-No design because 
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To see whether Shipley's idea has any possibility of being correct, I 
turn again to her (1961) data. Both the simultaneous detection-recognition 
and the detection of an unknown stimulus conditions were run, so we can 
collapse the first data matrix on the recognition responses and compare 
it with the second. This is done in Table 1 1  for the Yes-No experiment 
and in Table 12 for the forced-choice experiment. Although there are 
some differences, which may very well be due to different response biases, 
they seem in sufficient accord to warrant more study of the idea. 

Table 11 Per Cent Yes Responses in the Yes-No Design When the 
Signal Is Unknown 

Subject 
Stimulus 

Presentation 
1 2 3 

Observed Calculated Observed Calculated Observed Calculated 

The calculated columns are obtained by collapsing the recognition responses in the 
corresponding detection and recognition experiment (Shipley, 1961). See Table 2 for a 
description of the experimental conditions. 

Table 12 Per Cent Correct Responses in Forced-Choice Design 
When Stimulus Is Known and  When I t  Is Unknown 

Stim- Subject 
ulus 
Presen- 1 2 3 
tation Stim- Stim- Stim- 

Stim- ulus Stim- ulus Stim- ulus 
ulus Un- Cal- ulus Un- Cal- ulus Un-  Cal- 

Known known culated Known known culated Known known culated 

The  calculated columns are obtained by collapsing the recognition responses for the four 
response detection and recognition experiment (Shipley, 1961). See Table 2 for a description 
of the experimental conditions. 

10. C O N C L U S I O N S  

Although detection and recognition experiments have long been 
performed-not always under those names-interest in them in theoretical 
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circles has increased considerably during the last ten or  fifteen years, and a 
healthy interaction of theory and experiment has evolved. There is every 
reason to expect a continued rapid accretion in our knowledge of these 
basic processes during the 1960's. Perhaps a brief indication of some of 
the possible paths of work is a good way to summarize the progress we 
have made. 

1. As I have been a t  pains to point out, there are now at  least three 
different response theories designed to account for detection behavior. 
One task, therefore, is to decide among them or, if need be, to develop 
better theories for a t  least several of the more important modalities, 
including visual and acoustic intensity. 

2. N o  matter what response model is ultimately judged best, questions 
of the dependence and independence of effects are bound to exist. For  
example, we must know when a forced-choice design can be treated as 
an independent combination of several Yes-No designs. At present, we 
make ad hoc assumptions that apply only to certain extreme cases: a 
white noise background is assumed to result in independent effects, 
whereas a pure tone background is assumed to result in a perfect correla- 
tion of effects. Just why we should make these assumptions and what we 
should assume in intermediate cases is unclear; hence we need a detailed 
characterization, stated in terms of the physical nature of the stimulation, 
of the dependencies that are introduced. 

3. Again, no  matter how we resolve the question of the best response 
theory, we shall need a theory to relate the stimulus parameters to the 
physical properties of the stimuli and one to relate the bias parameters to 
various other objective features of the experiments, especially the payoffs. 
Considerable research is currently under way to uncover the stimulus- 
parameter relations for both the signal detectability and threshold models. 
Rather less effort is being devoted to the biasing problem, partly because 
it strikes a number of workers as less interesting than the stimulus problem, 
which they feel deals with the fundamental mechanisms of hearing and 
vision. Without questioning the importance of theories about the stimuli, 
i t  should not be forgotten that theories about the bias parameters are 
likely to get a t  fundamental issues in learning and cognition and SO, in my 
view, deserve as much careful attention. 

4. The theoretical analysis of stimulus recognition is less developed 
than that of detection, despite all of the interesting work that has resulted 
from applications of the information-theoretic measures. N o  one has yet 
effectively accounted for the information-theory findings in terms of any 
of the response theories we have discussed. My attempts to apply the 
choice theory are incomplete and are not entirely satisfactory. N o  really 
serious attempts have been made using the other theories, mainly because 
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of the severe conceptual difficulties that seem to arise when there are more 
than two or at most three stimuli. 

Substantively, recognition seems to be somewhat different from detec- 
tion, even though both are studied experimentally by means of complete 
identification designs. This apparent difference should not be forgotten 
by theorists, for it may mean that quite different response theories are 
needed. It would not surprise me if detection were a discrete threshold 
phenomenon, whereas recognition might turn out to be a continuous 
process or, at least, well approximated by one. 
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